• Title/Summary/Keyword: Rural watersheds

Search Result 97, Processing Time 0.031 seconds

Monitoring on Water Quality Changes of Rural Watersheds in the North Han River Basin (북한강수계 농업 소유역의 수질변화 모니터링)

  • Choi, Joong-Dae;Yang, Jae E.;Kim, Do-Hwan;Choi, Byung-Yong;Choi, Kyoung-JIn;Park, Ji-Sung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.695-700
    • /
    • 1999
  • Stream and groundwater qualities of two rural watershes in the upper North Han river basin were monitored for 14months. Six to eight stream sampling sites and two to there groundwater monitoring wells were chosen and water samples were regularyl collected and analyzed with respect to total nitrogen(T-N), total phosphorus(T-P) and total suspended solids(TSS). Monitoring data were graphically analyzed with respect to time.Rainfall amout and intensity seemed to have an impact on stream T-N and T-P concentration changes. TSS concentrations were generally lower than the first class stream water quality standared, Both stream and groundwater qualities near livesstock feetlot areas were degraded indicating the feedlots have an impact on water quality.

  • PDF

Application of ArcGIS-based Model Developed to Estimate Monthly Potential Soil Loss (월단위 토양유실가능성 추정을 위해 개발된 ArcGIS 기반의 모형 적용)

  • Yu, Na Young;Shin, Min Hwan;Kim, Jonggun;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.109-126
    • /
    • 2017
  • Universal soil loss equation (USLE) is used to estimate soil loss solely or employed in any hydrologic models. Since soil erosion has been an issue in South Korea for decades, the Ministry of Environment enacted a law to regulate soil erosion in 2012, which is the Notification of topsoil erosion status. The notification is composed of preliminary and field investigations, the preliminary investigation suggests to use USLE and provides USLE factors. However, the USLE factors provided in the notification was prepared at least 10 years ago, therefore it is limited to reflect recent climate changes. Moreover the current yearly USLE approach does not provide an opportunity to consider seasonal variation of soil erosion in South Korea. A GIS-based model was therefore applied to evaluate the yearly USLE approach in the notification. The GIS-based model employs USLE to estimate soil loss, providing an opportunity to estimate monthly soil loss with monthly USLE factor databases. Soil loss was compared in five watersheds, which were Geumgang, Hangang, Nakdonggang, Seomjingang, and Yeongsangang watersheds. The minimum difference was found at Seomjingang watershed, the yearly potential soil loss were 40.15 Mg/ha/yr by the notification approach and 34.42 Mg/ha/yr by the GIS-based model using monthly approach. And, the maximum difference was found at Nakdonggang watershed, the yearly potential soil loss were 27.01 Mg/ha/yr by the notification approach and 10.67 Mg/ha/yr by the GIS-based model using monthly approach. As a part of the study result, it was found that the potential soil loss can be overestimated in the notification approach.

Study of Selection of Regression Equation for Flow-conditions using Machine-learning Method: Focusing on Nakdonggang Waterbody (머신러닝 기법을 활용한 유황별 LOADEST 모형의 적정 회귀식 선정 연구: 낙동강 수계를 중심으로)

  • Kim, Jonggun;Park, Youn Shik;Lee, Seoro;Shin, Yongchul;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.97-107
    • /
    • 2017
  • This study is to determine the coefficients of regression equations and to select the optimal regression equation in the LOADEST model after classifying the whole study period into 5 flow conditions for 16 watersheds located in the Nakdonggang waterbody. The optimized coefficients of regression equations were derived using the gradient descent method as a learning method in Tensorflow which is the engine of machine-learning method. In South Korea, the variability of streamflow is relatively high, and rainfall is concentrated in summer that can significantly affect the characteristic analysis of pollutant loads. Thus, unlike the previous application of the LOADEST model (adjusting whole study period), the study period was classified into 5 flow conditions to estimate the optimized coefficients and regression equations in the LOADEST model. As shown in the results, the equation #9 which has 7 coefficients related to flow and seasonal characteristics was selected for each flow condition in the study watersheds. When compared the simulated load (SS) to observed load, the simulation showed a similar pattern to the observation for the high flow condition due to the flow parameters related to precipitation directly. On the other hand, although the simulated load showed a similar pattern to observation in several watersheds, most of study watersheds showed large differences for the low flow conditions. This is because the pollutant load during low flow conditions might be significantly affected by baseflow or point-source pollutant load. Thus, based on the results of this study, it can be found that to estimate the continuous pollutant load properly the regression equations need to be determined with proper coefficients based on various flow conditions in watersheds. Furthermore, the machine-learning method can be useful to estimate the coefficients of regression equations in the LOADEST model.

Development of the EMC-based Empirical Model for Estimating Pollutant Loads from Small Agricultural Watersheds (농촌 소유역에서 EMC를 이용한 오염물질 부하량 산정기법의 개발)

  • Kim, Young-Chul;Kim, Geon-Ha;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.691-703
    • /
    • 2003
  • In this paper, a new and integrated approach easily used to calculate the pollutant loads from agricultural watersheds is suggested. Basic concepts of this empirical tool are based on the hypotheses that variations in event mean concentrations(EMCs) of the pollutants from a given agricultural watershed during rainstorms are only due to the rainfall pattern. This assumption would be feasible to agricultural watersheds whose land uses does not change during the cultivation period overlapped by rainy season and also in which point-sources of the pollutants are rare. Therefore, if EMC data sets through extensive sampling from various rural areas are available, it is possible to establish relationships between EMCs, shapes and land uses of the watersheds, and rainfall events. For this purpose, fifty one sets of EMC values were obtained from nine different watersheds, and those data were used to develop predictive tools for the EMCs of 55, COD, TN and TP in rainfall runoff. The results of the statistical tests for those formulas show that they are not only fairly good in predicting actual EMC values of some parameters, but also useful in terms of calculating pollutant loads on any time-spans such as the day of rainfall event or weekly, monthly, and yearly. Their applicability was briefly demonstrated and discussed. Also, the unit loads calculated from EMCs based on different land uses and real rainfall data over one of the watershed used for this study. were provided, and they are compared with other well-known unit loads.

A Study on Estimation of Rainfall Erosivity Using Frequency Analysis for Hapcheon Gauging Station (빈도해석에 의한 합천관측소의 강우침식인자 산정 연구)

  • Ahn, Jung Min;Lee, Geun Suk;Lyu, Si Wan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.19-27
    • /
    • 2012
  • RUSLE(Revised Universal Soil Loss Equation) has been widely used to estimate the soil loss amount of watersheds from rainfall erosivity, soil erodibility, topographic features and cropping management condition. Rainfall erosivity is the most dominant and sensitive factor among these so that the determination of reliable rainfall erosivity is essential to estimate the soil loss of watershed. Since there has been no criterion to determine the rainfall erosivity in Korea, the empirical values, determined from the relation between the annual average rainfall and erosivity or suggested by TBR(Transport Research Board), have been used for designing the erosion control structure and controlling the soil erosion for watersheds. In this study, the procedure for estimating the rainfall erosivity using frequency analysis is proposed. The most fitted distribution function, with calculated rainfall erosivities with various frequencies and durations, has been also selected. The suggested procedure can be used to estimate the optimal value of rainfall erosivity for RUSLE in order to design soil erosion structures and control the soil erosion in watersheds effectively.

Effect of Land Use on the Water Quality of Small Agricultural Watersheds in Kangwon-do (토지이용이 농업소유역의 수질에 미치는 영향)

  • Choe, Jung-Dae;Lee, Chan-Man;Choe, Ye-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.501-510
    • /
    • 1999
  • Stream and groundwater qualities of small agricultural watershed in Kangwon Probince, Korea were monitored 1 to 2 years, and the relationships between stream and groundwater qualities and seasonal water quality changes analyzed. Flooded paddy fields influenced groundwater level and quality during rice culture. The differences between groundwater levels during rice culture and non-culture spans were between 0.8 and 2.91 m. Seasonal changes of total nitrogen and nitrate nitrogen concentrations of stream and groundwater were very similar and groundwater quality was thought to have a profound impact on stream quality of the research watersheds. Suspended solids and BOD maintained the first degree stream water quality throughout the monitoring period except for a few and short flooding spans. The concentrations of total phosphorus and total bacteria of both waters showed wide variations and any seasonal trends were not observed. Long-term monitoring studies on small rural watersheds were recommended to understand the pattern of both stream and groundwater quality changes with respect to land use, season and cultural practice, and to apply the results to develop effective water quality management policies for large river and domestic water supply systems.

  • PDF

A mathematical spatial interpolation method for the estimation of convective rainfall distribution over small watersheds

  • Zhang, Shengtang;Zhang, Jingzhou;Liu, Yin;Liu, Yuanchen
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.226-232
    • /
    • 2016
  • Rainfall is one of crucial factors that impact on our environment. Rainfall data is important in water resources management, flood forecasting, and designing hydraulic structures. However, it is not available in some rural watersheds without rain gauges. Thus, effective ways of interpolating the available records are needed. Despite many widely used spatial interpolation methods, few studies have investigated rainfall center characteristics. Based on the theory that the spatial distribution of convective rainfall event has a definite center with maximum rainfall, we present a mathematical interpolation method to estimate convective rainfall distribution and indicate the rainfall center location and the center rainfall volume. We apply the method to estimate three convective rainfall events in Santa Catalina Island where reliable hydrological data is available. A cross-validation technique is used to evaluate the method. The result shows that the method will suffer from high relative error in two situations: 1) when estimating the minimum rainfall and 2) when estimating an external site. For all other situations, the method's performance is reasonable and acceptable. Since the method is based on a continuous function, it can provide distributed rainfall data for distributed hydrological model sand indicate statistical characteristics of given areas via mathematical calculation.

Assessing Nonpoint Sources Pollution Affected by Regulating Gate and Liquid Manure Application in Small Agricultural Watershed (제수문 영향 및 액비시용 증가에 따른 농업소유역에서의 비점오염원 특성 평가)

  • Song, Jae-Do;Jang, Taeil;Son, Jae-Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.31-38
    • /
    • 2016
  • The purpose of this study was to assess nonpoint sources (NPS) pollution affected by liquid manure and regulating gate in a small agricultural watershed. The study area, which is a wide plain farmland, was operating by the Buyong regulating gate in order to maintain irrigation water level during irrigation period. Consequentially, runoff only occurs through the gate at each event in rainy season for avoiding farmland inundation. In addition, the usage ratio of liquid manure in the study area has been increased greatly since 2014. Discharge loads at the Hwaingsan bridge subwatershed were 1.2 times for T-N, 4-10 times for T-P, and 3-8 times for TOC compared with the Soyang watershed (control) during study period. The reason was that NPS pollutants from upper Gpeun and Sangri bridge subwatersheds, which are widely spraying with livestock liquid manure, were stack at this subwaterehd because of regulating gate in non-rainy seasons. A number of agricultural watersheds in Saemangeum watershed are affected by regulating gate and vigorous livestock activities so that substantial management schemes under controling regulating gate are needed for minimizing livestock related NPS.

Pollutant Delivery Ratio of Okdong-cheon Watershed Using HSPF Model (HSPF 모형을 이용한 옥동천 유역의 유달율 분석)

  • Lee, Hyunji;Kim, Kyeung;Song, Jung-Hun;Lee, Do Gil;Rhee, Han-pil;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.9-20
    • /
    • 2019
  • The primary objective of this study was to analyze the delivery ratio using Hydrological Simulation Program - Fortran (HSPF) in Okdong-cheon watershed. Model parameters related to hydrology and water quality were calibrated and validated by comparing model predictions with the 8-day interval filed data collected for ten years from the Korea Ministry of Environment. The results indicated that hydrology and water quality parameters appeared to be reasonably comparable to the field data. The pollutant delivery loads of the watershed in 2015 were simulated using the HSPF model. The delivery ratios of each subwatershed were also estimated by the simple ratio calculation of pollutant discharge load and pollutant delivery load. Coefficients of the regression equation between the delivery ratio and specific discharge were also computed using the delivery ratio. Based on the results, multiple regression analysis was performed using the discharge and the physical characteristics of the subwatershed such as the area. The equation of delivery ratio derived in this study is only for the Okdong-cheon watershed, so the larger studies are needed to apply the findings to other watersheds.

Analysis on Characteristics of Variation in Flood Flow by Changing Order of Probability Weighted Moments (확률가중모멘트의 차수 변화에 따른 홍수량 변동 특성 분석)

  • Maeng, Seung-Jin;Hwang, Ju-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1009-1019
    • /
    • 2009
  • In this research, various characteristics of South Korea's design flood have been examined by deriving appropriate design flood, using data obtained from careful observation of actual floods occurring in selected main watersheds of the nation. 19 watersheds were selected for research in Korea. The various characteristics of annual rainfall were analyzed by using a moving average method. The frequency analysis was decided to be performed on the annual maximum flood of succeeding one year as a reference year. For the 19 watersheds, tests of basic statistics, independent, homogeneity, and outlier were calculated per period of annual maximum flood series. By performing a test using the LH-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test, among applied distributions of Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distribution was found to be adequate compared with other probability distributions. Parameters of GEV distribution were estimated by L, L1, L2, L3 and L4-moment method based on the change in the order of probability weighted moments. Design floods per watershed and the periods of annual maximum flood series were derived by GEV distribution. According to the result of the analysis performed by using variation rate used in this research, it has been concluded that the time for changing the design conditions to ensure the proper hydraulic structure that considers recent climate changes of the nation brought about by global warming should be around the year 2002.