• Title/Summary/Keyword: Rural soil

Search Result 1,514, Processing Time 0.03 seconds

Effects of Tillage and Cultivation Methods on Carbon Accumulation and Formation of Water-stable Aggregates at Different Soil Layer in Rice Paddy

  • Kim, Sukjin;Choi, Jong-Seo;Kang, Shingu;Park, Jeong-Hwa;Hong, Sunha;Kim, Tae-su;Yang, Woonho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.634-643
    • /
    • 2017
  • No-tillage is an effective practice to save labor input and reduce methane emission from the paddy. Effects of tillage and cultivation methods on carbon accumulation and soil properties were investigated in the treatments of tillage-transplanting (T-T), tillage-wet hill seeding (T-WS), minimum tillage-dry seeding (MT-S) and no-tillage dry seeding (NT-S) of rice. Soil carbon was higher in NT-S and MT-S, compared to T-T and T-WS. In NT-S and MT-S, soil carbon contents were the highest in the top soil (5 cm depth) and decreased with soil depth. In T-T and T-WS, however soil carbon contents showed no significant difference up to soil depth of 15 cm from the top. Carbon content was the highest in the soil particle size under $106{\mu}m$ and decreased as the soil particle size increased. Contents of water-stable aggregates in NT-S and MT-S were higher than those of T-T and T-WS. In NT-S and MT-S, contents of water-stable aggregates were the highest in the top soil and significantly decreased with soil depth while no significant difference up to the soil depth of 15 cm in T-T and T-WS. Available $SiO_2$ contents in the top soil were the highest in NT-S and MT-S while the lowest in T-T and T-WS. It is concluded that minimum or no disturbance of soil in rice cultivation can increase carbon accumulation in the soil, especially in the top layer, and subsequently contribute to the formation of the water-stable soil aggregates.

A Study on the Degree of Pollution of Stream and Reservoir Sediments in Rural Area (농촌 중.소 하천 및 저수지 퇴적물의 오염현황)

  • Chang, Pyoung-Wuck;Woo, Chull-Woong;Kim, Seong-Pil
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.2 s.19
    • /
    • pp.1-6
    • /
    • 2003
  • This study was performed to investigate the degree of pollution of sediments of stream and reservoir in rural area. A series of field investigations were carried out for Kyongki-do area and chemical analysis were performed for sediment samples. It was found that some samples were heavily polluted with phenol and TPH and gave off a malodor. Soil Pollution Scores(SPSs) was determined for sediment samples. Some samples were classified to Soil Pollution Class(SPC) 2 and 3. For recycling and disposal of dredged sediments from stream and reservoirs, these polluted sediments should be carefully considered. In the environmental improvement operations of rural area, the degree of pollution of sediments of stream and reservoir are carefully investigated and suitable counterplan must be established.

Hydraulic Property and Solute Breakthrough from Salt Accumulated Soils under Various Head Pressures

  • Lee, Sanghun;Chung, Doug-Young;Hwang, Seon-Woong;Lee, Kyeong-Bo;Yang, Chang-Hyu;Kim, Hong-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.717-724
    • /
    • 2012
  • Salt accumulated soil should be reclaimed to lower salt level for crop production. This study was carried out to investigate the characteristics of water flow and transport of mono and divalent solutes on salt accumulated soils with different head pressures. Saturated hydraulic conductivity was measured by constant and falling head methods with maintaining different head pressures. Saturated hydraulic conductivity was influenced by bulk density and organic matter contents in soils, but it had different elusion patterns between saline and sodic soil. While the quantity of water necessary for reclamation could be varies with soil type, it was considered that the supply of one pore volume of water was affordable and economic. Additional head pressure significantly increased the volume of leachate at a given time and it was more effective at low organic matter soils. The results indicate that additional head pressure would be one of the best irrigation practices on desalination method for salt accumulated soils.

Spatial Variability of Soil Moisture and Irrigation Scheduling for Upland Farming (노지 작물의 적정 관개계획을 위한 토양수분의 공간변이성 분석)

  • Choi, Yonghun;Kim, Minyoung;Kim, Youngjin;Jeon, Jonggil;Seo, Myungchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.81-90
    • /
    • 2016
  • Due to droughts and water shortages causing severe damage to crops and other vegetations, much attention has been given to efficient irrigation for upland farming. However, little information has been known to measure soil moisture levels in a field scale and apply their spatial variability for proper irrigation scheduling. This study aimed to characterize the spatial variability and temporal stability of soil water contents at depths of 10 cm, 20 cm and 30 cm on flat (loamy soil) and hill-slope fields (silt-loamy soil). Field monitoring of soil moisture contents was used for variogram analysis using GS+ software. Kriging produced from the structural parameters of variogram was applied for the means of spatial prediction. The overall results showed that the surface soil moisture presented a strong spatial dependence at the sampling time and space in the field scale. The coefficient variation (CV) of soil moisture was within 7.0~31.3 % in a flat field and 8.3~39.4 % in a hill-slope field, which was noticeable in the dry season rather than the rainy season. The drought assessment analysis showed that only one day (Dec. 21st) was determined as dry (20.4 % and 24.5 % for flat and hill-slope fields, respectively). In contrary to a hill-slope field where the full irrigation was necessary, the centralized irrigation scheme was appeared to be more effective for a flat field based on the spatial variability of soil moisture contents. The findings of this study clearly showed that the geostatistical analysis of soil moisture contents greatly contributes to proper irrigation scheduling for water-efficient irrigation with maximal crop productivity and environmental benefits.

Status and Changes in Chemical Properties of Upland Soil from 2001 to 2017 in Korea (한국 밭토양 화학성 변동 평가)

  • Kim, Yi-Hyun;Kong, Myung-suk;Lee, Eun-Jin;Lee, Tae-Goo;Jung, Goo-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.213-218
    • /
    • 2019
  • BACKGROUND: Monitoring of the dynamic changes of chemical properties in agricultural land is very important for agricultural sustainability. Chemical properties of agricultural soils in Korea have been investigated at four-year interval in the order of paddy, plastic film house, upland, and orchard soils since 1999. METHODS AND RESULTS: Total 8,160 topsoil samples were taken from the upland in 2001, 2005, 2009, 2013, and 2017, respectively. Soil chemical properties such as pH, electrical conductivity (EC), organic matter (OM), available phosphate (Avail. $P_2O_5$), and exchangeable (Exch.) cations (K, Ca, and Mg) were analyzed. Soil pH and Exch. Ca contents have increased since 2001. Average concentration of Avail. $P_2O_5$ increased from $547mg\;kg^{-1}$ in 2001 to $657mg\;kg^{-1}$ in 2017. Average concentration of Exch. Ca in 2017 was higher than the upper limit of its optimal range for upland cultivation. Excess and deficiency of chemical properties of upland soils comply with soil analysis and fertilizer prescription. CONCLUSION: We concluded that excessive nutrient in upland needed to be properly managed with soil test.

Influence of Various Biochars on the Survival, Growth, and Oxidative DNA Damage in the Earthworm Eisenia Fetida

  • Kim, Won-Il;Kunhikrishnan, Anitha;Go, Woo-Ri;Jeong, Seon-Hee;Kim, Gyeong-Jin;Lee, Seul;Yoo, Ji-Hyock;Cho, Namjun;Lee, Ji-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.231-238
    • /
    • 2014
  • BACKGROUND: Biochar (BC) has a great potential for enhancing soil fertility and carbon sequestration while facilitating beneficial waste disposition. Therefore, it is essential to assess and mitigate any inadvertent consequences associated with soil biochar amendment. Earthworm activity is very vital in the soil system, yet there are a limited number of studies that have examined their impact resulting from biochar application to soil. METHODS AND RESULTS: In this study, the survival, growth, reproductive tests, and oxidative DNA damage tests (measured by 8-hydroxydeoxyguanosine (8-OHdG) and catalase (CAT) activities) to assess the potential toxicity to earthworm Eisenia fetida in artificial soil amended with BCs were investigated. The BCs derived from perilla meal, sesame meal, and pumpkin seed were pyrolyzed at 300 and $550^{\circ}C$, and then amended with soil at a rate of 5%. All the earthworms survived, but lost weight compared to control soil after 28 day incubation period. Moreover, the BC-amended soils did not significantly affect the cocoon numbers of earthworms. Slightly higher concentrations of 8-OHdG and CAT were observed in earthworms present in BC-treated soil than those in control soil. Furthermore, the 8-OHdG concentrations in the soil amended with BC produced at $550^{\circ}C$ were greater than those at $300^{\circ}C$, and it slightly decreased as the incubation time increased. CONCLUSION: These observations could be due to higher contents of toxic metal(loid)s and also higher pH in BCs pyrolyzed at $550^{\circ}C$ than $300^{\circ}C$. While BC is efficiently being used in agricultural fields, this study suggests that it is required to assess the unintended negative impacts of BC on soil ecosystems.

Annual Changes of Soil Salinity of the Saemangeum Reclaimed Tide Land during Last 10 Years (새만금 간척지 토양 염농도의 경시적 변동 특성: 10년 조사 결과)

  • Ryu, Jin-Hee;Oh, Yang-Yeol;Lee, Su-Hwan;Lee, Kyung-Do;Kim, Young-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.327-333
    • /
    • 2020
  • BACKGROUND: Through Saemangeum development project, 283 ㎢ of new land is planned to be created and the reclaimed land of 89.7 ㎢ will be used as agricultural land. Therefore, monitoring of soil salinity is required to evaluate the suitability of the land for agricultural purposes. METHODS AND RESULTS: We investigated changes of soil physico-chemical properties, including electric conductivity (EC), of the Saemangeum reclaimed tidal land (1,195 ha) from 2008 to 2017 to obtain basic data for suitable soil management of the Saemangeum reclaimed tidal land. Soil samples were collected from the sites spaced 200 meters apart from each other. Soil analysis results showed that average soil EC was 14.5 dS m-1 in 2008, and decreased to 6.5 dS m-1 in 2014 and to 0.9 dS m-1 in 2017. Accordingly, the soil area below soil EC 4.7 dS m-1 (accepted as farmable soil salinity) increased; 25.0% in 2008, 54.3% in 2014, and 96.9% in 2017. The annual decrease in soil EC was described as y = -1.5756x + 14.6 (R2= 0.96), where y = soil EC and x = elapsed years since 2008. CONCLUSION: The soil salinity have decreased to a level for cultivation of most edible crops. However, since the soil chemical properties, such as soil organic matter were inadequate for the cultivation of crops, it was suggested that management of soil fertility would be important for efficient agricultural use of Saemangeum reclaimed land.

Change in Available Phosphate by Application of Phosphate Fertilizer in Long-term Fertilization Experiment for Paddy Soil (인산질비료 장기연용 논토양에서 유효인산 변동)

  • Kim, Myung-Sook;Kim, Seok-Cheol;Yun, Sun-Gang;Park, Seong-Jin;Lee, Chang-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.141-146
    • /
    • 2017
  • BACKGROUND: Phosphorus(P) is a vital factor for rice but excess input of phosphorus fertilizer can cause environmental risk and waste of fertilizer resources. We studied to assess the change of available phosphate, P balance, critical concentration of available phosphate under a rice single system. METHODS AND RESULTS: The changes of available phosphate of paddy soil were examined from long-term fertilization experiment which was started in 1954 at the National Academy of Agricultural Science. The treatments were no phosphate fertilization(No fert., and N), phosphate fertilization(NPK, NPKC, and NPKCLS). The available phosphorus concentrations in treatments without phosphate fertilizer (No fert. and N) were decreased continuously. But, after 47 years, available phosphate content in phosphate fertilizer treatment (NPK, NPKC, and NPKCLS) reached at the highest ($245{\sim}331mg\;kg^{-1}$), showing a tendency to decrease afterward. The mean annual P field balance in these treatments (NPK, NPKC, and NPKCLS) had positive values that varied from 16.6 to $17.5kg\;ha^{-1}year^{-1}$, and ratio of residual P were increased. These showed that phosphate fertilizer in soil were converted into the form of residual phosphorus which was not easily extracted by available phosphate extractant. Also, It was estimated that the critical value of available phosphate for rice cultivation was $120mg\;kg^{-1}$ using Cate-Nelson equation. CONCLUSION: We concluded that no more phosphate fertilizer should be applied in rice single system if soil available phosphate is higher than the critical P value.

Characteristics of the soil loss and soil salinity of upland soil in saemangeum reclaimed land in western South Korea

  • Kim, Young Joo;Lee, Su Hwan;Ryu, Jin Hee;Oh, Yang Yeol;Lee, Jeong Tae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.316-316
    • /
    • 2017
  • The objective of this study is to estimate quantitatively soil salinity and soil loss at upland soils in agriculture land region in Saemangeum reclaimed land on the south Korea coasts. Soil loss and soil salinity are the most critical problem at reclaimed tidal saline soil in Korea. The several thematic maps of research area such as land cover map, topographic and soil maps, together with tabular precipitation data used for soil erosion and soil salinity calculation. Meteorological data were measured directly as air temperature, wind speed, solar radiation, and precipitation. The experiment was conducted 2% sloped lysimeter ($5.0m{\times}20.0m$) with 14 treatments and it were separated by low salinity division (LSD) and high salinity division (HSD) install. The cation content in ground water increased during time course, but in the case of land surface water the content was variable, and $K^+$ was lower than that of $Na^+$ and $Mg^{2+}$. At the LSD under rainproof condition, the salinity was directly proportional to soil water content, but at the HSD the tendency was no reversed. In condition of rainproof, the amount of soil salinity was higher at the HSD than at the LSD. Positive correlation was obtained between the soil water content and available phosphorous content at the rainfall division, but there was no significance at the surface soil of the rainproof division. Sodium adsorption ratio and anion contents in soil were repressed in the order of vinyl-mulching > non-mulching > bare field. According to the result of analyzing soil loss, soil loss occurred in a vinyl-mulching, a non-mulching and a bare field in size order, and also approximately 11.2 ton/ha soil loss happened on the reclaimed land area. The average soil loss amount by the unit area takes place in a non-mulching and bare field a lot. Our results indicate that soluble salt control and soil erosion are critical at reclaimed tidal saline soil and the results can provide some useful information for deciding management plans to reduce soil loss and salt damage for stable crop production and diverse utilization or cultivation could be one of the management options to alleviate salt damage at reclaimed tidal saline soil in Korea.

  • PDF