• Title/Summary/Keyword: Rural Development

Search Result 9,614, Processing Time 0.04 seconds

One dimensional diffusion of NaCl in flooded soil systems (담수(湛水) 토양계(土壤系)에서 염분(鹽分)의 일차원적(一次元的) 확산(擴散))

  • Oh, Yong-Taeg;Yoo, Sun-Ho;Jung, Yeong-Sang;Hong, Chong Woon;Park, Chun Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1976
  • 1. Under an asumption that Ficks diffusion equation could be applicable in soil systems, the diffusivities of NaCl in several flooded soil systems were measured to range from $0.4{\times}10^{-5}cm^2sec^{-1}$ to $0.83{\times}10^{-5}cm^2sec^{-1}$ 2. It was discussed that, when a polder soil with a uniform initial salt content through the profile is desalinated only by diffusion to flooding water, the salt content in profile is a function of soil depth, diffusion time, and diffusivity as following $$C=C^{\circ}erf\frac{x}{\sqrt[2]{Dt}}$$ 3. On the basis of Kirkham, et al's integration of complementary erra function, the speed of desalting was discussed to be inversely proportional to the square root of time as following $$dq/dt=C^{\circ}{\sqrt{D/{\pi}t}}$$ 4. It was estimated enough to exchange the flooding water once or twice, even when desalination of polder soil is carried out only by diffusion, if the desalination begins in June, the used flooding water is fresh water, and flooding depth is 10cm. 5. Desalination of polder soil by diffusion requires 2 month for good standing of planted rice.

  • PDF

The influence of herbicides on soil microflora -Influence of butachlor- (제초제(除草劑)가 토양미생물(土壤微生物) Flora에 미치는 영향 - Butachlor 제(第)의 영향 -)

  • Kim, Jung Je;Jung, Hyeon Sig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 1976
  • The purpose of this investigation is to find out the effects on the changes of microflora and the effects on the inorganic nutrients of the fertilized soil and the non-fertilized soil under submerged condition with the treatment of butachlor at the levels of 250, 500, and 1000ppm respectively. The survey was made within the period of 72 days with 7-day intervals under the incubated condition. The result came out to be the following: 1. The Fluctuated changes of soil microflora A. Bacteria: The plots treated by 500ppm of butachlor in case of non-fertilized soil showed the decreasing tendency of bacteria until 21st day. But there were no effects on the other plots. The plots treated by 250ppm and 500ppm in case of fertilized soil showed decreasing tendency on the 7th day, and 1000ppm until 21st days. B. Actinomycetes: There was no effects on the actinotnycetes in case of the non-fertilized soil but the fertilized soil showed some decrease. In both cases, actinomycetes have generally shown a little increase according to the time passage. C. Fungi: In both cases of the fertilized soil and the non-fertilized soil, the plots treated by the media showed some decreasing tendency in comparison with the control plots. There was no change to the number of fungi according to the time passage. 2. The fluctuated changes of nutrient A. $NH_4-N$: The whole plots showed decrease of $NH_4-N$ by adding butachlor. The higher the intencity of butachiar showed the more decreasing tendency of $NH_4-N$. In case of the non-fertilized soil, the highest increase of $NH_4-N$ appeared from the 7th day to 14th day, but showed degrease thereafter. The increasing tendency was seen in case of the fertilized soil plots. B. $NO_3-N$: Decrease of $NO_3-N$ was shown in the whole plots by the treatment of media, and on the 44th day of cultivation almost none of $NO_3-N$ was detected. C. $NO_2-N$: Whole plots showed the number of $NO_2-N$ highest on the 35th day, and there were nothing measurable on the 44th day. D. Eh: On the fertilized soil, the condition of reduction went on strongly but on the non-fertilized soil, the condition of reduction kept on till 42nd day and oxidation appeared thereafter.

  • PDF

Biogas Production from Agricultural Wastes and Residues in Tropical Region (열대지역(熱帶地域)에서 농산폐유기물(農産廢有機物)을 원료(原料)로한 멘탄가스발생(發生))

  • Joo, Yeong-Hee;Jeon, Yong-Woon;Calilung, Edwin J.;Elepano, Arnold R.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.325-335
    • /
    • 1985
  • Biogas production from agricultural wastes were summarized as follows: 1. Biogas Generation Characteristics of Various Manures and Residues a. Gas yield from crop residues like rice straw, rice hull, corn stalk and coconut husk can be improved by addition of animal manures. b. Gas yield from coconut husk can be improved through aerobic fermentation for at least one week before loading in the digester. c. Gas yield from fresh rice straw is better than from pre-fermented one, whether alone or in combination with animal manures. d. Initial study has shown that fresh azolla can be substituted for animal manures in manurerice straw combinations and gas yield derived based on unit volatile solids loaded is actually better than for manure-residue combinations. e. Gas production is highly sensitive to substrate pH and becomes almost nil at a pH of below 6. 2. Effect of ambient conditions and other factors on biogas production in a house hold-size digester. a. Results showed that compaction of rice straw in straw-manure combination can reduce gas yield compared with loosely mixed straw. b. The effective gas production period extended to 70 days using freshly threshed rice straw and fresh cattle manure as feed material. c. Underground and above ground digesters with shade have relatively more stable substrate temperature than aboveground exposed digesters. This relative temperature instability may likely be the reason for lower gas yield for the exposed aboveground digester loaded with loose straw-cattle manure substrate, compared with the underground digester with the same substrate. 3. Economic Analysis a. Based on prevailing costs of fuel, materials, and labor in the Philippines, biogas produced from the household size system is cheaper than either LPG or kerosene. b. If other benefits like organic fertilizer, pollution control and convenience are considered, biogas will surely be the best alternative fuel source.

  • PDF

Physiological studies on the sudden wilting of JAPONICA/INDICA crossed rice varieties in Korea -II. Artificial induction of sudden wilting in Korea and the effect of nutrio-physiological status (일(日)·인원연교잡(印遠緣交雜) 수도품종(水稻品種)의 급성위조증상(急性萎凋症狀) 발생(發生)에 관(關)한 영양생리학적(營養生理學的) 연구(硏究) -II. 한국(韓國)에서 급성위조증(急性萎凋症)의 인위적(人爲的) 재현(再現)과 영양생리(營養生理)의 영향(影響))

  • Kim, Yoo-Seob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 1989
  • The results of the investigation on the effects of plant nutrio-physiological status and reemergence of sudden wilting in rice on the occurrence of sudden wilting were summarized as follows: 1. The occurrence of sudden wilting, degree of damage and occurring time in the investigated variety showed to concur with the results of the previous experiment. 2. Nitrogen and Potassium contents in leaves related an occurrence of sudden wilting at heading stage have a very high negative co-relation (the value is -0.9224 at Yushin and -0.8243 at Milyang 23). 3. Regarding the relation between occurrence of sudden wilting and root activity capacity at the late growth stage, the root activity capacity at productive growth stage showed higher than at reproductive growth stage, which is the same in the two varieties but Milyang 23 is higher than Yushin. It is confirmed that root activity capacity in the two varieties has become very low at reproductive growth stage. 4. The toot activity capacity in the field with potassium showed a small occurrence of sudden wilting and the root activity capacity in the field with no potassium showed a very high co-relation value (the value is 0.8947 at Yushin and 0.7301 at Milyang 23). 5. Regarding the relation between the occurrence of sudden wilting and water evaporation quantity, water evaporation quantity after the heading date has a more direct relation to sudden wilting than that which occurrs prior to the heading date. Water evaporation quantity is higher in the field with no potassium, low leaves and Yushin, than in the field with potassium high leaves and Milyang 23. 6. The starch content in culm of Yushin and Milyang 23 at ripening stage showed high value in proportion to potassium quantity, and the starch content is lower as internode is lower. However, in fourth internode, the starch content is greatly increased in the field with potassium contrasted to the field with no potassium.

  • PDF

Factor Analysis of Soil and Water Quality Indicators in Different Agricultural Areas of the Han River Basins (한강수계 농업지대에서 토양과 수질 지표에 대한 요인 분석)

  • Jung, Yeong-Sang;Yang, Jae-E;Joo, Jin-Ho;Kim, Jeong-Je;Kim, Hyun-Jeong;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.398-404
    • /
    • 1999
  • Factor analysis technique was employed to screen the principal indicators influencing soil and water qualities in the intensively cultivated areas of the Han River Basin. Soil chemical parameters were analyzed for the soil samples collected at intensive farming area in Pyungchang-Gun, and water quality monitoring data were obtained from the agricultural small catchments of Han River Basin during 1996 and 1997. Among the $11{\times}11$ cross correlation matrix, 29 correlations were significant out of 55 soil quality indicator pairs. The overall Kaiser's measure of sampling adequacy(KMS) value was acceptable with 0.60. Most indicators except iron were acceptable. Among soil indicators, the first factors showing high factor loadings were pH, Ca and Mg. The factor loading was the highest for Ca. The second factor could be characterized as phosphate and micronutrient. The third factor was organic matter and EC, and the fourth factor was potassium and Fe. Out of 190 water quality indicators, 86 correlations were significant. Overall KMS value was 0.74, but the KMS values for pH, TSS, Cd, Cu and Fe were lower than 50. The first factor of EC accounts 27.1 percents of the total variance, and showed high factor loadings with Na, Ca, $SO_4$, Mg, K, Cl, $NO_3$, and T-N. The second factor showed high loadings with Zn, Fe, Mn and Cd. The third to seventh factors could be characterized as $PO_4$, TSS, inorganic nitrogen, pH and T-P, and Cu factors, respectively. The factor score for EC was the highest in Kuri, followed by Chunchon, Dunnae and Daegwanryng. The factor score for heavy metals were the highest in the Daegwanryng. The results demonstrated that the factor analysis could be useful to select the most principal factor influencing soil and water qualities in the agricultural watershed.

  • PDF

Studies on Growth Enviromental and Inorganic Components of Korean Native Tea Plants(Camellia sinensis O. kuntze) (한국(韓國) 자생차(自生茶)의 생육지 토양과 엽중 무기성분 함량)

  • Park, Jang-Hyun;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 1998
  • To characterize the growth environment, inorganic composition and morphological chracteristics of leaves of Korean tea plant, soil and tea leaf samples were collected from 15 locations and analyzed. The chemical characteristics of soils were in range of pH 4.09~6.15, OM 23.9~72.6g/kg, available phosphate less than 300mg/kg, K $0.8{\sim}2.5cmol^+/kg$, Na $tr{\sim}0.17cmol^+/kg$, Ca $1.0{\sim}6.2cmol^+/kg$, and Mg $0.3{\sim}2.1cmol^+/kg$. The contents of Ni. Cr, Zn. Cu, Pb, and Cd were at the level less than natural content in upland soil. Most of the sample soils were sandy loamy and loamy texture. The native tea plants were mainly grown in bamboo thicket or in forest. The leaf sizes of tea plants were $6.85{\pm}1.75{\times}2.6{\pm}0.5cm$, lateral vein number $14.2{\pm}2.7$, and crenated number $58.5{\pm}11.2$, and the leaf color was thin to dark green. The contents of $NH_4{^+}$, $Na^+$, $K^+$, $Mg^{2+}$ and $Ca^{2+}$ in tea leaves were in range of 30.5~47.7, 45.5~164.5, 16,998~25,431, 1.590~2,392 and 1,085~1,958mg/kg, respectively. The contents of $F^-$, $Cl^-$, $NO_3{^-}$, $PO_4{^{3-}}$ and $SO_4{^{2-}}$ were in range of 21.2~63.2, 126.4~257.9, 108.5~185.9, 1,270~1.819, and $954{\sim}1,670mg/kg$, respectively. The leaf size of native tea plant grown widlly in Shunchun Changchun-ri, Hwasun Ssangbongsa, Kuryoi Chonunsa, Bosong Daewonsa and Namhae Boriam was as large as those of Yabukita. Japan cultiver, grown at Kangjin Jangwon tea field.

  • PDF

Evaluation of Function of Upland Farming for Preventing Flood and Fostering Water Resources (밭농사의 수자원 함양과 홍수조절 기능에 대한 계량화 평가)

  • Hyun, Byung-Keun;Kim, Moo-Sung;Eom, Ki-Cheol;Kang, Ki-Kyung;Yun, Hong-Bae;Seo, Myung-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.163-179
    • /
    • 2003
  • Multifunctionality of agriculture which is not traded on the market now has been an important international issue in that it environmental and public benefits. We carried out to modify and to update the function of upland farming on flood prevention and fostering water resources. Economic values of environmental benefits were evaluated by replacement cost methods. Models to evaluate the function of preventing flood were selected as: (1)precipitation(flood-inducing) - runoff(A), (2) soil depth ${\times}$ soil air phase, (3) precipitation (flood-inducing) - runoff(B), (4) soil depth ${\times}$ effective porosity of soil. Models to estimate the function of fostering water resources were (1) saturated hydraulic conductivity (Ks) ${\times}$ duration of saturation(days) ${\times}$ (1-ratio of water flow directly into river), (2) precipitation ${\times}$ ratio of water fostered by rain resources ${\times}$ (area of upland/total land area), and (3) soil water retention quantity(under standing crop or tree) - SWRQ(in bare soil). Function of preventing flood was $883Mg\;ha^{-1}$ of water per year and 645 million Mg for the whole upland area. Function of fostering water resources was $94.1Mg\;ha^{-1}$ of water per year and 69 million Mg for the whole upland area. The value of flood-preventing function evaluated by replacement cost methods was estimated 1,428 billion won per year as compared to the cost for dam construction. The value of water resource fostering were estimated 8.6 billion won in the price of living water.

Production of Antimicrobial Compounds and Cloning of a dctA Gene Related Uptake of Organic Acids from a Biocontrol Bacterium Pseudomonas Chlororaphis O6 (생물적 방제균 Pseudomonas chlororaphis O6의 길항 물질 생산 및 유기산 흡수에 관련된 dctA 유전자의 클로닝)

  • Han, Song-Hee;Nam, Hyo-Song;Kang, Beom-Ryong;Kim, Kil-Yong;Koo, Bon-Sung;Cho, Baik-Ho;Kim, Young-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.134-144
    • /
    • 2003
  • A rhizobacterium Pseudomonas cholororaphis O6 produced several secondary metabolites, such as phenazines, protease, and HCN that may be involved in inhibition of the growth of phytopathogenic fungi. In field study, P. chlororaphis O6 treatment on wheat seed suppressed root rot disease caused by Fusarium culmorum. The major organic acids of cucumber root exudates were fumaric acid, malic acid, benzoic acid, and succinic acid. Glucose and fructose were major monosaccharides in cucumber root exudates. The total amount of organic acids was ten times higher than that of the sugars. P. chlororaphis O6 grew well on cucumber root exudates. The dctA gene of P. chlororaphis O6 consisted of a 1,335 bp open reading frame with a deduced amino acid sequence of 444 residues, corresponding to a molecular size of about 47 kD and pI 8.2. The deduced dctA sequence has ten putative transmembrane domains, as expected of a membrane-embedded protein. Our results indicated that organic acids in cucumber root exudates may play an important role in providing nutrient source for root colonization of biological control bacteria, and the dctA gene of P. chlororaphis O6 may be an important bacterial trait that is involved in utilization of root exudates.

Growth Characteristics and Nutrient Loads of Submerged Plants in Flood Control Reservoir around Juam Lake (주암호 홍수조절지내 침수식물체별 생육특성과 영양염류 부하량)

  • Seo, Young-Jin;Seo, Dong-Cheol;Choi, Ik-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Kang, Seok-Jin;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.922-928
    • /
    • 2011
  • In order to properly manage the quality of water in Juam Lake, distributions and growth characteristics of submerged plants in Boknae flood control reservoir were investigated. In addition, the total amount of nutrient load by submerged plants were investigated. The total vegetation area was $1,146,849m^2$ of total flood control reservoirs ($1,848,568m^2$) before flooding. By August 19, all of Boknae flood control reservoir was flooded during rainy season. Dominant plants were MISSA (Miscanthus sacchariflorus), SCPMA (Scirpus fluviatilis) and CRXDM (Carex dimorpholepis) which occupied 87% of all flood control reservoirs. The total amounts of organic matter loads at different submerged plants were great in the order of CRXDM ($501,642kg\;area^{-1}$) > SCPMA ($20,987kg\;area^{-1}$) > MISSA ($3,413kg\;area^{-1}$). The total amounts of nitrogen loads by CRXDM, SCPMA and MISSA under different submerged plants were 56%, 3.9% and 0.8%, respectively. The total amounts of phosphorus loads at different submerged plants were on the order of CRXDM ($1,842kg\;area^{-1}$) > SCPMA ($78kg\;area^{-1}$) > MISSA ($14.8kg\;area^{-1}$). Therefore, the results of this study suggest that organic matter, T-N and T-P in water quality of Juam lake were strongly influenced by submerged plants in flood control reservoir.

Evaluation of N2O Emissions with Different Growing Periods (Spring and Autumn Seasons), Tillage and No Tillage Conditions in a Chinese Cabbage Field (배추의 재배시기와 경운 유.무에 따른 아산화질소 배출 평가)

  • Kim, Gun-Yeob;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1239-1244
    • /
    • 2011
  • Importance of climate change and its impact on agriculture and environment has increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere. Nitrous oxide ($N_2O$) emission in upland fields were assessed in terms of emissions and their control at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city. It was evaluated $N_2O$ emissions with different growing periods (spring and autumn seasons), tillage and no tillage conditions in a chinese cabbage field. The results were as follows: 1) An amount of $N_2O$ emissions were high in the order of Swine manure compost>NPK>Hairy vetch+N fertilizer. By tillage and no tillage conditions, $N_2O$ emissions were reduced to 33.7~51.8% (spring season) and 31.4~76.7% (autumn season) in no-tillage than tillage conditions. 2) In autumn season than those spring season, $N_2O$ emissions at NPK, hairy vetch+N fertilizer and swine manure compost were reduced to 49.6%, 39.0% and 60.0%, respectively, in tillage treatment and 59.5%, 70.6% and 58.7%, respectively, in no-tillage treatment. 3) $N_2O$ emission measured in this study was 15.2~86.4% lower with tillage and no tillage treatments than that of the IPCC default value (0.0125 kg $N_2O$-N/kg N).