• Title/Summary/Keyword: Rural Community

Search Result 3,781, Processing Time 0.036 seconds

Characteristics of Groundwater Quality in Bedrock and Tailing Dumps at the Abandoned Dalcheon Mine Area (달천 폐광산 지역에서 광미적재지와 기반암 지하수의 수질특성 연구)

  • Yang, Sung-Il;Kang, Dong-Hwan;Kim, Tae-Yeong;Chung, Sang-Yong;Kim, Min-Chul
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • pH and Eh were measured at 25 points in the abandoned Dalcheon mine. And, major ion components $(Na^+,\;K^+,\;Ca^{2+},\;Mg^{2+},\;Cl^-,\;SO_4^{2-},\;CO_3^{2-},\;HCO_3^-)$ were analyzed through groundwater sampling at 41 points. pH and Eh were measured the highest concentration in serpentinite area. And, pH was between weak alkaline and intermediate values in study area. Groundwater in study area was dominated oxidation-reduction environment caused by reaction with carbonate rock. Because sulfur components contained in carbonate, serpentinite, arsenopyrite and pyrite was dissolved by groundwater, $SO_4^{2-}$ component was high in study area. And $Ca^{2+},\;Mg^{2+}$ of cations were high. Correlation coefficients of ion components in tailing dumps were 0.95 between $Ca^{2+}\;and\;SO_4^{2-}$, 0.86 between $Ca^{2+}\;and\;Mg^{2+}$, 0.85 between $Mg^{2+}\;and\;SO_4^{2-}$. Correlation coefficients of ion components in bedrock were 0.86 between $Mg^{2+}\;and\;SO_4^{2-}$, 0.68 between $Ca^{2+}\;and\;SO_4^{2-}$. Concentration range of $Ca^{2+}$ in tailing dumps was $6.85{\sim}323.58mg/L,\;and\;3.18{\sim}207.20mg/L$ in bedrock. Concentration range of $SO_4^{2-}$ in tailing dumps was $21.54{\sim}1673.17mg/L,\;and\;2.04{\sim}1024.64mg/L$ in bedrock. By the result of Piper diagram analysis with aquifer material, groundwater in tailing dumps was $Ca-SO_4$ type. Groundwater quality types with bedrock material were Mg-$SO_4$ and Mg-$HCO_3$ types in serpentinite area, Ca-$HCO_3$ type in carbonate area, Na-K and $CO_3+HCO_3$ types in hornfels, respectively. As a result of this study, groundwater in tailing dumps were dissolved $Ca^{2+},\;Mg^{2+}\;and\;SO_4^{2-}$ components with high concentration. Also, these ion components were transported into bedrock aquifer.

Status of Agrometeorological Information and Dissemination Networks (농업기상 정보 및 배분 네트워크 현황)

  • Jagtap, Shrikant;Li, Chunqiang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.71-84
    • /
    • 2004
  • There is a growing demand for agrometeorological information that end-users can use and not just interesting information. lo achieve this, each region/community needs to develop and provide localized climate and weather information for growers. Additionally, provide tools to help local users interpret climate forecasts issued by the National Weather Service in the country. Real time information should be provided for farmers, including some basic data. An ideal agrometeorological information system includes several components: an efficient data measuring and collection system; a modern telecommunication system; a standard data management processing and analysis system; and an advanced technological information dissemination system. While it is conventional wisdom that, Internet is and will play a major role in the delivery and dissemination of agrometeorological information, there are large gaps between the "information rich" and the "information poor" countries. Rural communities represent the "last mile of connectivity". For some time to come, TV broadcast, radio, phone, newspaper and fax will be used in many countries for communication. The differences in achieving this among countries arise from the human and financial resources available to implement this information and the methods of information dissemination. These differences must be considered in designing any information dissemination system. Experience shows that easy across to information more tailored to user needs would substantially increase use of climate information. Opportunities remain unexplored for applications of geographical information systems and remote sensing in agro meteorology.e sensing in agro meteorology.

Characterization of Ostrinia furnacalis (Lepidoptera: Pyralidae) Occurrence Against Maize and Sorghum Varieties in a Paddy-upland Rotation Field (답전윤환 포장 내 옥수수 및 수수 품종들에 대한 조명나방 발생 특성)

  • Kim, Min Joon;Yoon, Sung-Tag;Lee, Hee-Kwon;Jo, Hyeong-Chan;Kim, Soon-Il
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.329-336
    • /
    • 2016
  • Occurrence of oriental corn borer, Ostrinia furnacalis, and yield in a paddy-upland rotation field for 8 maize (Eolrukchal 1, Heugjeom 2, Miheukchal, Ilmichal, Heukjinjuchal, Chalok 4, Mibaek 2, Daehakchal) and 7 sorghum (Hwanggeumchal, Anzunbaengisusu, Moktaksusu, Sodamchal, DS-202, Nampungchal, Donganme) varieties has been surveyed. In a monitoring study using a pheromone trap carried out from 15 May to 10 September, the density of O. furnacalis adults increased rapidly from about 2 weeks after maize planting and reached the highest density at mid June. After that, their density was fluctuated a little at earlier September. The number of the damaged maize and invasive pores on the stem of 2 maizes and sorghum varieties was examined. The mean number of the damaged maize per 20 plants was 19 and 18 plants, and the number of invasive pores was 1.8 and 1.4 per maize stem in Daehakchal and Mibaek 2, respectively. In a survey carried out at harvest period using 8 maize varieties, the damaged ratio was 94%, 92%, 71%, 64%, 54%, 52%, and 45% in Daehakchal, Mibaek 2, Ilmichal, Eolrukchal 1, Chalok 4, Miheukchal, and Heugjeom 2, respectively. The number of invasive pore per Ilmichal stem was 1.4 and that of the others was less than 1.0 per stem. In addition, the damaged ratio of maize ears was 50% in Ilmichal, 40% in Heukjinjuchal, 37% in Daehakchal, etc. The damage pattern of 2 sorghum varieties, Nampungchal and Donganme, by O. furnacalis larvae was steeply increased from planting to 2 months and the trend was continued up to earlier August. At this time, the mean number of damaged sorghum was 13 and 9.2 plants for Nampungchal and Donganme, and the number of invasive stem pores was 1.06 and 0.46, respectively. In another survey carried out at harvest period for 7 sorghum varieties, their damaged ratio was 95% in DS-202, 76% in Moktaksusu, 75% in Sodamchal, 67% in Nampungchal, 57% in Anzunbaengisusu, 46% in Donganme, and 34% in Hwanggeumchal. The damage of sorghum varieties was much higher and severer than that of maizes by O. furnacalis larvae. The number of invasive pores on a sorghum stem was 1.7 in DS-202, 1.4 in Moktaksusu, 1.3 in Sodamchal, 1.1 in Nampungchal, 1.0 in Anzunbaengisusu, 0.5 in Donganme, and 0.4 in Hwanggeumchal. Meanwhile, there was no distinct connection between damaging results and yields of maizes and sorghums by O. furnacalis larvae in a paddy-upland rotation field. These results from this study can be applicable for the establishment of a management strategy to control Oriental corn borer in paddy-upland rotation fields for maize and sorghum.

Groundwater Flow Analysis in Fractured Rocks Using Zonal Pumping Tests and Water Quality Logs (구간양수시험과 수질검층자료에 의한 균열암반내 지하수 유동 분석)

  • Hamm, Se-Yeong;Sung, Ig-Hwan;Lee, Byeong-Dae;Jang, Seong;Cheong, Jae-Yeol;Lee, Jeong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.411-427
    • /
    • 2006
  • This study aimed to recognize characteristics of groundwater flow in fractured bedrocks based on zonal pump-ing tests, slug tests, water quality logs and borehole TV camera logs conducted on two boreholes (NJ-11 and SJ-8) in the city of Naju. Especially, the zonal pumping tests using sin91e Packer were executed to reveal groundwater flow characteristics in the fractured bedrocks with depth. On borehole NJ-11, the zonal pumping tests resulted in a flow dimension of 1.6 with a packer depth of 56.9 meters. It also resulted in lower flow dimensions as moving to shallower packer depths, reaching a flow dimension of 1 at a 24 meter packer depth. This fact indicates that uniform permissive fractures take place in deeper zones at the borehole. On borehole SJ-8, a flow dimension of 1.7 was determined at the deepest packer level (50 m). Next, a dimension of 1.8 was obtained at 32 meters of packer depth, and lastly a dimension of 1.4 at 19 meters of packer depth. The variation of flow dimension with different packer depths is interpreted by the variability of permissive fractures with depth. Zonal pumping tests led to the utilization of the Moench (1984) dual-porosity model because hydraulic characteristics in the test holes were most suitable to the fractured bedrocks. Water quality logs displayed a tendency to increase geothermal temperature, to increase pH and to decrease dissolved oxygen. In addition, there was an increasing tendency towards electrical conductance and a decreasing tendency towards dissolved oxygen at most fracture zones.

The Variation Characteristics of Groundwater Level with Distance from Shoreline in the Jeju Island (제주도 지역의 해안선에서 이격거리에 따른 지하수위 변동특성)

  • Kang, Dong-Hwan;Yang, Sung-Il;Kim, Tae-Yeong;Park, Hyun-Joo;Kwon, Byung-Hyuk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.167-176
    • /
    • 2008
  • The variation characteristics of groundwater level with distance from shoreline at Jeju Island was investigated using groundwater level data monitored from 257 wells for dry season (December 1998) and wet season (July 1997), respectively. Groundwater levels of the dry season were $7.46{\sim}203.8\;m$ with an average of 60.49 m, while those of the wet season were $4.01{\sim}204.10\;m$ with an average of 57.66 m. Groundwater level of the dry season was higher than that of the wet season, which was caused by heavy rains between June and October, 1998 at the Jeju Island. Correlation coefficients between altitude and groundwater level for dry and wet seasons were above 0.86, and those between dry season and wet season groundwater levels were very high above 0.95. 257 groundwater level data were classified at an interval of 500 m. Average values for altitude, groundwater levels and distance from shoreline were calculated for 17 intervals. Altitude and groundwater level fur dry and wet seasons at $0{\sim}4\;km$ intervals were increased with distance from shoreline, but those at $4{\sim}9\;km$ intervals were irregularity. Linear functions of the groundwater level for dry and wet seasons as distance from shoreline were estimated, and the coefficient of determinant at $0{\sim}4\;km$ interval data was higher than it at $0{\sim}9\;km$ interval data. Increasing rate of groundwater level at $0{\sim}4\;km$ intervals was more 2 times than it at $0{\sim}9\;km$ intervals. This results are caused by linear increase of groundwater level to 4 km from shoreline and by irregularity of groundwater level at the $4{\sim}9\;km$ intervals.

Analyzing the Influence of Biomass and Vegetation Type to Soil Organic Carbon - Study on Seoseoul Lake Park and Yangjae Citizen's Forest - (바이오매스량과 식생구조가 토양 탄소함유량에 미치는 영향 분석 - 서서울호수공원과 양재 시민의 숲을 대상으로 -)

  • Tanaka, Riwako;Kim, Yoon-Jung;Ryoo, Hee-Kyung;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.123-134
    • /
    • 2014
  • Identification of methods to optimize the growth of a plant community, including the capacity of the soil to further sequester carbon, is important in urban design and planning. In this study, to construct and manage an urban park to mitigate carbon emissions, soil organic carbon of varying biomass, different park construction times, and a range of vegetation types were analyzed by measuring aboveground and belowground carbon in Seoseoul Lake Park and Yangjae Citizen's Forest. The urban parks were constructed during different periods; Seoseoul Lake Park was constructed in 2009, whereas Yangjae Citizen's Forest was constructed in 1986. To identify the differences in soil organic carbon in various plant communities and soil types, above and belowground carbon were measured based on biomass, as well as the physical and chemical features of the soil. Allometric equations were used to measure biomass. Soil total organic carbon (TOC) and chemical properties such as pH, cation exchange capacity (CEC), total nitrogen (TN), and soil microbes were analyzed. The analysis results show that the biomass of the Yangjae Citizen's Forest was higher than that of the Seoseoul Lake Park, indicating that older park has higher biomass. On the other hand, TOC was lower in the Yangjae Citizen's Forest than in the Seoseoul Lake Park; air pollution and acid rain probably changed the acidity of the soil in the Yangjae Citizen's Forest. Furthermore, TOC was higher in mono-layered plantation area compared to that in multi-layered plantation area. Improving the soil texture would, in the long term, result in better vegetation growth. To improve the soil texture of an urban park, park management, including pH control by using lime fertilization, soil compaction control, and leaving litter for soil nutrition is necessary.

A Sustainable Operation Plan for School Gardens - Based on a Survey of Elementary School Gardens in Seoul (학교 텃밭의 지속적인 운영방안에 관한 연구 - 서울특별시 초등학교의 학교 텃밭 실태조사를 바탕으로 -)

  • Choi, I-Jin;Lee, Jae Jung;Cho, Sang Tae;Jang, Yoon Ah;Heo, Joo Nyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.4
    • /
    • pp.36-48
    • /
    • 2018
  • This study surveyed 599 elementary schools in Seoul to provide measures for the quantitative expansion and sustainable operation of environmentally-friendly school garden. Of all schools, 161 schools had formed and were operating school gardens. The total area of school gardens was $166,901m^2$ and the mean area was $131.2m^2$ in elementary, junior high and high schools in Seoul. Meanwhile, the total area of school gardens was $65,493m^2$ and the mean area was $363m^2$ in 161 schools that participated in the survey, indicating $1.15m^2$ per student. Of these schools, 11.8% were operating gardens themselves, while 50.3% were operating gardens that had been newly renovated or environmentally improved by institutional support projects after initially managing gardens themselves. According to the locations of school gardens, mixed-type gardening (a combination of school gardening and container vegetable gardening) accounted for 34.8%, followed by school gardening at 32.9%, container vegetable gardening at 29.2%, and suburb community gardening at 3.1%. Those in charge of garden operations were teachers at 51.6%, comprising the largest percentage. Facilities built when forming the garden included storage facilities for small-scale greenhouses and farming equipment at 26.1%, accounting for the largest percentage. No additional facilities constructed accounted for 21.7%. The greatest difficulty in operating gardens was garden management at 34.2%. The most needed elements for the sustainable operation of gardens were improvement in physical environment and the need for hiring a paid garden, each accounting for 32%. The most important purpose for school gardening was creating educational environments (81.6%). The major source for gaining information on garden management was consultation from acquaintances (67.8%). Schools that utilize plant waste from gardens as natural fertilizers accounted for 45.8% of all schools. Responses to the impact of operating school gardens for educational purpose were positive in all schools as 'very effective' in 63.2% and 'effective' in 36.8%. This study was meaningful in that it intended to identify the current status of the operation of school gardens in elementary schools in Seoul, support the formation of school gardens appropriate for each school with sustainable operation measures, implement a high-quality education program, develop teaching materials, expand job training opportunities for teachers in charge, devise measures to support specialized instructors, and propose the need for a garden management organization.

A Study on the Sustainable Ewha Mural Village in a Viewpoint of Urban Regeneration (도시재생 관점에서 지속가능한 이화동 벽화마을에 관한 연구)

  • Kim, bo-mi;Son, Yong-Hoon;Lee, Dong-Kun;Lee, Hyun-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.3
    • /
    • pp.1-11
    • /
    • 2019
  • The purpose of this study is to propose a sustainable village-unit urban regeneration plan for the Ewha Mural Village, where mural artists recovered concrete fences to be followed by some residents damaging the mural paintings. Through a review of the existing literature and a preliminary survey, we derived the urban regeneration factors (environmental sustainability, economic sustainability, and social sustainability) applicable at the village level. After an empirical survey on the residents, we tried to identify various problems of the Ewha Mural Village. Residents selected the factors of accessibility, parking management, diversity of industries, creation of new jobs, community participation of residents for the mural village's activation, and stable living spaces. In the case of Ewha Mural Village, physical environment factors for the residents at the time of construction were not considered and the village was mainly planned using budget-based murals. Since then, the inequality of economic benefits intensified the conflicts among the residents. In addition, public benefits, such as establishing new industries and employing outsiders, were not provided, and these facts appear to have led to an unsustainable murals village, in which the murals that are the protagonists of the village revitalization are being destroyed. Therefore, the urban regeneration of Ewha Mural Village should be designed considering a region where some residential areas can be transformed into tourist areas. In addition, it is essential to employ a win-win method to improve the living environment, such as road maintenance, not only partial economic benefits, such as increased land-value, and to increase resident's value as a common asset within the village itself.

Soil Washing Coupled with the Magnetic Separation to Remediate the Soil Contaminated with Metal Wastes and TPH (자력선별과 토양세척법을 연계하여 금속폐기물과 TPH로 복합 오염된 토양 동시 정화)

  • Han, Yikyeong;Lee, Minhee;Wang, Sookyun;Choi, Wonwoo
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Batch experiments for the soil washing coupled with the magnetic separation process were performed to remediate the soil contaminated with metal and oil wastes. The soil was seriously contaminated by Zn and TPH (total petroleum hydrocarbon), of which concentrations were 1743.3 mg/kg and 3558.9 mg/kg, respectively, and initial concentrations of Zn, Pb, Cu, and TPH were higher than the 2nd SPWL (soil pollution warning limit: remediation goal). The soil washing with acidic solution was performed to remove heavy metals from the soil, but Pb and Zn concentration of the soil maintained higher than the 2nd SWPL even after the soil washing with acidic solution. The 2nd soil washing was repeated to increase the Pb and Zn removal efficiency and the Zn and Pb removal efficiencies additionally increased by only 8 % and 5 %, respectively, by the 2nd soil washing (> 2nd SPWL). The small particle separation from the soil was conducted to decrease the initial concentration of heavy metals and to increase the washing effectiveness before the soil washing and 4.1 % of the soil were separated as small particles (< 0.075 mm in diameter). The small particle separation lowered down Zn and Pb concentrations of soil to 1256.3 mg/kg (27.9 % decrease) and 325.8 mg/kg (56.3 % decrease). However, the Zn concentration of soil without small particles still was higher than the 2nd SPWL even after the soil washing, suggesting that the additional process is necessary to lower Zn concentration to below the 2nd SPWL after the treatment process. As an alternative process, the magnetic separation process was performed for the soil and 16.4 % of soil mass were removed, because the soil contamination was originated from unreasonable dumping of metal wastes. The Zn and Pb concentrations of soil were lowered down to 637.2 mg/kg (63.4 % decrease) and 139.6 mg/kg (81.5 % decrease) by the magnetic separation, which were much higher than the removal efficiency of the soil washing and the particle separation. The 1st soil washing after the magnetic separation lowered concentration of both TPH and heavy metals to below 2nd SPWL, suggesting that the soil washing conjugated with the magnetic separation can be applied for the heavy metal and TPH contaminated soil including high content of metal wastes.

Impact and significance of Nongak(農樂) education in Agricultural High School since 1950 on the modern Korean Nongak History (1950년대 중반 이후 농림/농업고등학교에서의 농악(農樂) 교육이 한국농악 현대사에 끼친 영향과 의의)

  • Yang, Ok-Kyung
    • (The) Research of the performance art and culture
    • /
    • no.40
    • /
    • pp.111-136
    • /
    • 2020
  • Agricultural high schools are undergoing a change their name from the mid-1950s to the 2000s. Although it varies slightly depending on the case, it has been changed from 'rural forests' to 'agricultural farms' or 'agricultural industries' and 'life sciences high schools' in turn. In several aricultural high schools had managed Nongak Department(class), it's guarantees the continuity of Korea's traditional folk art. Examples include entertainment and farming in Honam region of Jeonju aricultural high School in North Jeolla Province, Geumsan aricultural high School in South Chungcheong Province, Gimcheon aricultural high School in North Gyeongsang Province. Therefore, the interpretation and significance of studies should follow. This method of Nongak education in modern school institutions is a new phenomenon in the history of Nongak after modern time, the emergence of a whole new pattern of professional entertainment Nongak after paving and Female-Nongak, as well as local traditional folk music. Education here was conducted in such a way that the best performers of the time were invited as guidance teachers among traditional folk artists. Thus, various local and professional music and entertainment were able to be promoted Apart from the social relations of delay, social progress, and economy, the education of farming and music, which consists of teachers and students in public schools, has provided an environment where unlimited freedom is allowed for art forms. In other words, the conditions for a new performance style experiment and creative fusion were met, and the foundation for the development of professional musical performers who had acquired individualized talents from previous generations was laid down in the context of the phenomenon of active stage music and theater performance of outstanding in the culture of Nongak. In other words, the Department of Agriculture and aricultural high school was a very free space compared to other communities' and economic community's agricultural music in social relationships bound by traditional cultural customs. This is why they have created a new style of performance through a new experiment and a different traditional performance repertoire, and their activities have led to a more stylistic expansion from traditional farming. More importantly, the figures who came across Agricultural Nongak department became the main experts of traditional Korean folk music nowdays. Thus, Nongak Department, operated by the Agriculture and Forestry High School, was a space where would give a very important meaning in terms of Nongak history.