• Title/Summary/Keyword: Rupture velocity

Search Result 53, Processing Time 0.024 seconds

Pseudo-dynamic approach of seismic earth pressure behind cantilever retaining wall with inclined backfill surface

  • Giri, Debabrata
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.255-266
    • /
    • 2011
  • Knowledge of seismic earth pressure against rigid retaining wall is very important. Mononobe-Okabe method is commonly used, which considers pseudo-static approach. In this paper, the pseudo-dynamic method is used to compute the distribution of seismic earth pressure on a rigid cantilever retaining wall supporting dry cohesionless backfill. Planar rupture surface is considered in the analysis. Effect of various parameters like wall friction angle, soil friction angle, shear wave velocity, primary wave velocity, horizontal and vertical seismic accelerations on seismic earth pressure have been studied. Results are presented in terms of tabular and graphical non-dimensional form.

A Case Study on the Plumbing Pipe Burst of Floor Radiant Heating (바닥 복사난방 배관설비에서 배관파열 사례 연구)

  • Jung, Hong-Do;Shin, Youn-Han;Park, Chen-Kwan;Jeong, Hyo-Min;Chung, Han-Shik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.10
    • /
    • pp.745-749
    • /
    • 2012
  • Heating pipes burst was occurred in the apartment complex that was applied floor radiant heating system. There were two opinions for the cause of the bursted heating pipes that was the flaw during construction and defects in the product and also there were conflicting among them. Officials analyzed it in order to investigate the cause of the rupture. Tensile test results showed different tensile strength between the lower part of heating pipe and the upper part of heating pipes. The lower tensile strength is maintained while the top was not secured. The reason why rupture heating pipes is that flow velocity isn't secured and then the air get stagnant. Stagnant air makes hardening. It is caused rupturing. The proper flow rate was confirmed 0.166 m/sec after experiment. It isn't make stagnant air inside heating pipes.

Strong ground motion characteristics of the 2011 Van Earthquake of Turkey: Implications of seismological aspects on engineering parameters

  • Beyen, Kemal;Tanircan, Gulum
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1363-1386
    • /
    • 2015
  • The October 23 2011 Van Earthquake is studied from an earthquake engineering point of view. Strong ground motion processing was performed to investigate features of the earthquake source, forward directivity effects during the rupture process as well as local site effects. Strong motion characteristics were investigated in terms of peak ground motion and spectral acceleration values. Directiviy effects were discussed in detail via elastic response spectra and wide band spectograms to see the high frequency energy distributions. Source parameters and slip distribution results of the earthquake which had been proposed by different researchers were summarized. Influence of the source parameters on structural response were shown by comparing elastic response spectra of Muradiye synthetic records which were performed by broadband strong motion simulations of the earthquake. It has been emphasized that characteristics of the earthquake rupture dynamics and their effects on structural design might be investigated from a multidisciplinary point of view. Seismotectonic calculations (e.g., slip pattern, rupture velocity) may be extended relating different engineering parameters (e.g., interstorey drifts, spectral accelerations) across different disciplines while using code based seismic design approaches. Current state of the art building codes still far from fully reflecting earthquake source related parameters into design rules. Some of those deficiencies and recent efforts to overcome these problems were also mentioned. Next generation ground motion prediction equations (GMPEs) may be incorporated with certain site categories for site effects. Likewise in the 2011 Van Earthquake, Reverse/Oblique earthquakes indicate that GMPEs need to be feasible to a wider range of magnitudes and distances in engineering practice. Due to the reverse faulting with large slip and dip angles, vertical displacements along with directivity and fault normal effects might significantly affect the engineering structures. Main reason of excessive damage in the town of Erciş can be attributed to these factors. Such effects should be considered in advance through the establishment of vertical design spectra and effects might be incorporated in the available GMPEs.

Cutting and Conveying Characteristics for Development of Chinese Leek Harvester (부추 수확기 개발을 위한 예취 및 이송특성 구명)

  • Jun H. J.;Kim S. H.;Hong J. T.;Choi Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.220-228
    • /
    • 2005
  • This study was conducted to investigate the main factors that contain a rotating velocity ratio between wheel and conveyor belt, a tilt angle of conveyor belt and a rotating velocity of a dick cutter for mechanization of Chinese leek harvest. In the survey on the cultivation of Chinese leek, row spacing of 350 m and cutting height of 10 mm from the ground were set up for field tests. Test equipment was designed to cut, pick up and convey Chinese leek one row by one row. From the results of material tests, pick-up height of conveyor belt was set up at $60\~90m$ from the bottom, and the strain and stress at rupture of Chinese leek was 0.487 m/m and 0.01078 MPa. An elastic coefficient of the rubber (Neoprene) of conveyor belts was 1.1077 under the strain of 0.3 nym. from the results of field tests, the tilt angle of conveyor belt was the range of $25^{\circ}\~30^{\circ}$ under consideration far space of container, the velocity ratio between vehicle and conveying belt was 1 to 2.4~1.7 at 0.1~0.3 m/s of vehicle, and optimum rotating velocity of the disk cutter was 34.8 m/s or more under consideration for soil friction.

Optimization of Hot Forging Process of Flange Type Wheel Bearings by Statistical Technique (통계적 기법을 활용한 플랜지형 휠베어링의 열간단조 공정 최적화)

  • Lee, J.S.;Moon, H.K.;Song, B.H.;Hur, B.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.434-437
    • /
    • 2006
  • Due to the shape of spindle with small diameter and heavy section, rapid cooling is difficult. It is difficult to fabricate the tapered wheel bearings with fine microstructure. Thus, their mechanical characteristics, such as yield strength and fatigue resistance, decrease. Producing the tapered wheel bearings with good workability during orbital forming after hot forging, hot forging process with several process parameters was optimized by means of statistical technique of Six-Sigma scheme. As a result, the lower heating temperature is, the lower the hardness and yield strength of forgings are. Also, the faster conveyer velocity is, the lower the hardness and yield strength of forgings are. To avoid therefore occurrence of the surface rupture during orbital forming, the heating temperature should be controlled as low as possible and the conveyer velocity should be controlled as fast as possible.

  • PDF

Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC

  • Mazloom, Moosa;Allahabadi, Ali;Karamloo, Mohammad
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.587-611
    • /
    • 2017
  • This study focused on the influences regarding the use of polyepoxide-based polymer and silica fume (SF) on the fresh and hardened state properties of self-compacting lightweight concrete (SCLC) along with their impacts on electrical resistance and ultrasonic pulse velocity (UPV). To do so, two series of compositions each of which consists of twelve mixes, with water to binder (W/B) ratios of 0.35 and 0.4 were cast. Three different silica fume/binder ratios of 0, 5%, and 10% were considered along with four different polymer/binder ratios of 0, 5%, 10%, and 15%. Afterwards, the rupture modulus, tensile strength, 14-day, 28-day, and 90-day compressive strength, the UPV and the electrical resistance of the mixes were tested. The results indicated that although the use of polymer could enhance the passing and filling abilities, it could lead to a decrease of segregation resistance. In addition, the interaction of the SF and the polymeric contents enhanced the workability. However, the impacts regarding the use of polymeric contents on fresh state properties of SCLC were more prevalent than those regarding the use of SF. Besides the fresh state properties, the durability and mechanical properties of the mixes were affected due to the use of polymeric and SF contents. In other words, the use of the SF and the polymer enhanced the durability and mechanical properties of SCLC specimens.

Strength and durability characteristics of bricks made using coal bottom and coal fly ash

  • Ashish, Deepankar Kumar;Verma, Surender Kumar;Singh, Joginder;Sharma, Namesh
    • Advances in concrete construction
    • /
    • v.6 no.4
    • /
    • pp.407-422
    • /
    • 2018
  • The study evaluates properties of brick having coal ash and explores the possibility of utilization of coal bottom ash and coal fly ash as an alternative raw material in the production of coal ash bricks. Lower cement content was used in the investigations to attain appropriate strength and prohibit high carbon content that is cause of environmental pollution. The samples use up to 7% of cement whereas sand was replaced with bottom ash. Bricks were tested for compressive strength, modulus of rupture, ultrasonic pulse velocity (UPV), water absorption and durability. The results showed mix proportions of bottom ash, fly ash and cement as 1:1:0.15 i.e., M-15 achieved optimum values. The coal ash bricks were well bonded with mortar and could be feasible alternative to conventional bricks thus can contribute towards sustainable development.

Computational Study of the Operating Processes of a Ballistic Range (Ballistic Range의 작동과정에 대한 수치 해석적 연구)

  • Rajesh, G.;Kang, H.G.;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.68-71
    • /
    • 2007
  • A computational study has been performed using a chimera scheme to study the various operating processes inside a ballistic range. The compression flow fields in the pump tube and projectile motion in the launch tube are captured for various piston masses and diaphragm rupture pressures. The effect of a shock tube in between the pump tube and launch tube is analyzed. The results are compared with available experimental data. It is noted that, by adding a shock tube in between the pump tube and launch tube, the peak pressure in the ballistic range can be reduced without appreciable reduction in the velocity of the projectile.

  • PDF

A Study on FE Analysis For Improvement of Backward Impact Extrusion Process (후방 충격압출 공정개선을 위한 유한요소 해석기법 연구)

  • 정상원;정용호;김규하;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.641-645
    • /
    • 2002
  • In case of aluminum-cased battery, The ratio of height and base of square is generally above the ten times, square-shaped and problem of non-axis symmetry. It is typical model to set up the analysis method of finite element. The reliable analysis of finite element method is suggested, which is used to investigate the possibility that multi-stage deep drawing and ironing used currently is replaced by backward impact extrusion favorable in the respect of cost production and productivity. The influence of parameter was analyzed and compared, which was considered to analyze the process of large deformation plasticity such as extrusion. Die and billet was made as the same shape of finite element model. The results of experiment show good forming without the rupture and wrinkles with the optimum velocity 100mm/sec obtained by analysis.

  • PDF

Wave Motions in Stratified Fluids by a Translating Plate

  • Joo Sang-Woo;Park Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.882-895
    • /
    • 2006
  • Surface and interfacial waves in two superposed horizontal inviscid fluids of finite depths are studied. The flow is induced by translating a vertical rigid plate with a prescribed velocity. Analytical solutions that accurately predict the motion of the free surface and the interface are obtained by using a small-Froude-number approximation. Three different velocities of the plate are considered, while flows induced by any arbitrary motion of the plate can be easily analyzed by a linear superposition of the solutions obtained. It is shown that pinching of the upper layer can occur for a sufficiently thin upper layer, which leads to its rupture into small segments. Other interesting phenomena, such as primary and secondary wiggles generated on the interface near the wavemaker, are discussed.