• Title/Summary/Keyword: Rupture Strength

Search Result 460, Processing Time 0.024 seconds

Roller compacted concrete pavements reinforced with steel and polypropylene fibers

  • Madhkhan, Morteza;Azizkhani, Rasool;Torki, Mohammad E.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.149-165
    • /
    • 2011
  • In this paper, the effects of both pozzolans and (steel and poly-propylene) fibers on the mechanical properties of roller compacted concrete are studied. Specimens for the experiments were made using a soil-based approach; thus, the Kango's vibration hammer was used for compaction. The tests in the first stage were carried out to determine the optimal moisture requirements for mix designs using cubic $150{\times}150{\times}150$ mm specimens. In the tests of the second stage, the mechanical behaviors of the main specimens made using the optimal moisture obtained in the previous stage were evaluated using 28, 90, and 210 day cubic specimens. The mechanical properties of RCC pavements were evaluated using a soil-based compaction method and the optimum moisture content obtained from the pertaining experiments, and by adding different percentages of Iranian pozzolans as well as different amounts of steel fibers, each one accompanied by 0.1% of poly-propylene fibers. Using pozzolans, maximum increase in compressive strength was observed to occur between 28 and 90 days of age, rupture modulus was found to decrease, but toughness indices did not change considerably. The influence of steel fibers on compressive strength was often more significant than that of PP fibers, but neither steel nor PP fibers did contribute to increase in the rupture modulus independently. Also, the toughness indices increased when steel fibers were used.

An Evaluation of Mechanical Properties of Ultra High Strength Concrete(UHSC) (초고강도 콘크리트의 재료역학적 특성 평가)

  • Lim Hee Jae;Shin Sung Woo;Ahn Jong Mun;Lee Kwang Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.281-284
    • /
    • 2004
  • The most important reason of using of ultra high strength concrete in super tall building is that ultra high strength concrete can reduce the section of members and control side sway effectively. However, the practical utilization of ultra high strength concrete is dependent not only on the production techniques, but also the overall preparation including proper code provisions, construction technique. The purpose of this study is to evaluate of mechanical properties of UHSC, such as modulus of elasticity, stress-strain behavior, modulus of rupture and tensile splitting strength. It is similar to normal or high strength concrete but necessary to discern the difference between normal or high strength concrete and ultra high strength concrete and modify existed equations. And in this study another important factor is to discern the difference according to member size, curing method in ultra high strength concrete experimentally.

  • PDF

Effect of Bottom Ash Aggregate Contents on Mechanical Properties of Concrete (콘크리트의 역학적 특성에 대한 바텀애시 골재 양의 영향)

  • Ahn, Tae-Ho;Yang, Keun-Hyeok;Ha, Jung-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.379-386
    • /
    • 2020
  • The present study examined the effect of bottom ash aggregate contents on the compressive strength gain and mechanical properties(modulus of elasticity and rupture and splitting tensile strength) of concrete. Main test parameters were water-to-cement ratio and bottom ash aggregate contents for replacement of natural sand. Test results showed that the 28-days compressive strength of concrete and mechanical properties normalized by the compressive strength tended to decrease with the increase in bottom ash fine aggregate content. When compared with fib 2010 model equations, bottom ash aggregate concrete exhibited the following performances: lower rates of compressive strength gain at early ages but greater rates at long-term ages; slightly higher measurements for modulus of elasticity and rupture; and lower measurements for splitting tensile strength.

Mechanical Properties and Predictions of Strength of Concrete Containing Recycled Coarse Aggregates (순환굵은골재를 포함하는 콘크리트의 역학적 특성 및 강도 예측)

  • Yang, In-Hwan;Kim, Kyoung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.49-59
    • /
    • 2016
  • According to KS and Standard Specifications for Concrete, the compressive strength of concrete containing recycled aggregate is limited to 27 MPa and thereafter there are little research on concrete containing recycled aggregate of its compressive strength of greater than 27 MPa. Therefore, to expand the applicability of concrete recycled coarse aggregate(RCA), this paper concerns the mechanical properties of concrete containing RCA with compressive strength ranging from 30 to 60 MPa. The experimental parameters were water-cement ratio and replacement ratio of RCA. Water-cement ratio(w/c) was 0.36, 0.46 and 0.53, and replacement ratio of RCA was 30, 50, 70 and 100%. The experimental results were discussed about compressive strength, elastic modulus, split tensile strength and modulus of rupture. Test results of elastic modulus were compared to the design code predictions. Experimental elastic modulus for concrete with w/c=0.53 decreased by greater than 10% compared with that for concrete with w/c=0.36. The design code predictions for elastic modulus overestimated the experimental results. Whereas, the design code predictions for modulus of rupture underestimated the measured values.

Development and Application of High-Strength Lightweight Concrete, and its Structural Properties (고강도 경량콘크리트의 개발, 구조특성 및 실용화)

  • Choi, Myung-Shin;Ahn, Jong-Moon;Shin, Sung-Woo;Kang, Hoon;Kim, Jung-Shik;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.37-44
    • /
    • 1998
  • The objective of this study is development of high strength lightweight concrete and application or structural use. For this, mix proportions for each strength level were selected from lab tests, and adapted to producing ready-mixed concrete in batcher plant. It was very important to prewet the lightweight aggregates sufficiently for producibility and also workability. Splitting tensile strength of high-strength lightweight concrete produced has lower values than that of normal weight concrete, but modulus of rupture and modulus of elasticity are not less than normal weight concrete. The strength reduction factor ($\lambda$) for sand-lightweight concrete make higher than 0.85 present in structures using high-strength lightweight concrete. And it was showed that not parabola distribution but triangular distribution of stress in compression zone.

  • PDF

Tensile Behavior of Pin-Loaded Carbon/Epoxy Composite Laminates (핀하중을 받는 탄소섬유/에폭시 복합적층판의 인장거동)

  • 박동창;황운봉;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2518-2534
    • /
    • 1993
  • Fracture behavior of carbon/epoxy laminates under pin loading is studied experimentally and analytically. Effects of ratios of specimen width to hole diameter and edge distance to hole diameter on bearing strength are investigated. Characteristic length of the laminates obtained using HK model has good agreement with the experimental data. The larger hole size induced, the lower bearing strength is measured under pin loading . The bearing strength and failure mode could be predicted using HK model and Zhangs analytical solution of stress distribution around a pin loaded hole. Chamis' prediction method of bearing strength is also considered to predict failure mode and bearing strength. A modification of Chamis' method is made using the factor of rupturc. The predicted bearing strength by the modified method is reasonably close to the experimental data.

Physical and Mechanical Properties of 20-Year-Old Clonal Teak Trees in Ngawi, East Java, Indonesia

  • Widyanto Dwi NUGROHO;Mohammad NA'IEM;Ganis LUKMANDARU;WIDIYATNO;Yogi FERIAWAN;Fanany Wuri PRASTIWI;Aris WIBOWO;Diana PUSPITASARI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.459-472
    • /
    • 2024
  • Teak tree breeding programs have been conducted over the last several decades in various locations throughout Indonesia. These programs have produced superior teak clones with growth increments > 3 cm diameter at breast height. The wood quality of this clonal teak must be evaluated to determine the final use of these trees and the success rate of the teak breeding programs. In this study we investigated the physical condition (reflected in wood color and heartwood percentage), physical properties (moisture content, basic density, shrinkage, and tangential/radial shrinkage ratio), and mechanical properties (modulus of elasticity, modulus of rupture, compressive strength parallel and perpendicular to grain, hardness, and cleavage strength) in 20-year-old clonal teak planted in Ngawi, East Java. The parameters were measured in the axial (bottom, middle, and top) and radial (near pith, middle, and near bark) directions and according to the British Standard 373:1957. The results showed that axial variation significantly affected the wood color (L*, a*, and b*), basic density, radial shrinkage, modulus of elasticity, and compressive strength parallel to the grain. Besides, the radial variation had a significant effect on wood color (L*), basic density, modulus of elasticity, modulus of rupture, compressive strength parallel and perpendicular to the grain, hardness, and cleavage strength. Based on these results, it can be concluded that the teak breeding program has been highly successful.

Treatment of Old Achilles Tendon Rupture using Modified Flexor Hallucis Longus Tendon Transfer (변형된 장 족무지 굴건 이전술을 이용한 진구성 아킬레스 건 파열의 치료)

  • Kim, Hyong-Nyun;Suh, Il-Woo;Park, Yong-Wook
    • Journal of Korean Foot and Ankle Society
    • /
    • v.13 no.2
    • /
    • pp.133-137
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the clinical results of the old Achilles tendon rupture treated with modified flexor hallucis longus (FHL) tendon transfer. Materials and Methods: Seventeen patients with old Achilles tendon rupture treated with modified FHL tendon transfer between March 2004 and February 2008 were enrolled in this study. Technically FHL was pass through the distal portion of the ruptured tendon instead of the drilled hole made on the calcaneus. The mean age of the patients was 37 years (range, 22~67 years), mean follow-up period was 28 months (range, 12~30 months). Patients' subjective satisfaction, calf circumferential diameter, range of motion of ankle and AOFAS ankle-hind foot score and Arner-Lidholm score was evaluated. Results: The average gap between the ruptured tendon was 52 mm (range, 47~56 mm). The AOFAS score improved from 47 pre-operatively to 91 points at the last follow-up. Sixteen patients were satisfied with the result free from discomfort, a patient had mild discomfort who had DM. fourteen patients had decreased range of motion less than 5 degrees while 2 patients had more than 7 degrees decrease compared to the intact side but had no discomfort in daily activities. Nine patients had less than 1 cm calf circumferential diameter difference and 7 patients had 1 to 3 cm diameter difference compared to the intact side. One who had more than 3 cm diameter difference had deteriorated muscle strength. Conclusion: Modified FHL tendon transfer can be a useful technique for the treatment of old Achilles tendon rupture when the gap is with large gap placed too proximal.

  • PDF

Compressive Behavior of Some Vegetables (몇 가지 채소류의 압축거동)

  • 정헌상;박남규;도대홍
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.466-471
    • /
    • 1996
  • In order to investigate the compression characteristics on the some vegetables-cucumber, garlic, ginger, potato, and radish-compression force, distance, and time were measured with a Struct-O-Graph and correlations between them were investigated. Force-distance and distance-time curves were showed simply and reflection points were showed rarely. The time to rupture point was long of 11.7sec at the compression speed of 60mm/min and of 6.16sec at the compression speed of 120mm/min in potato, and short of 9.65, 4.55sec at the different compression speed in garlic, respectively. The rupture force was large of 16.64~20.00N at the different compression speed in potato and radish, and the sample at rupture point was showed crushing behavior under probe. These phenomena were suggested because compression strength of sample was different. In the result of regression analysis for force-time and distance-time to the rupture point, the correlation coefficients were above 0.96, and difference of among samples was small. The slopes of force-time were large of 1.772~3.385 in cucumber and small of 1.743~3.338 in potato, and the slopes of distance-time were obtained with reverse results.

  • PDF

PWHT Cracking Susceptibility in the Weld Heat-Affected Zone of Reduced Activation Ferritic/Martensitic Steels (핵융합로 구조용 저방사화강의 용접열영향부 후열처리 균열 감수성)

  • Lee, Jinjong;Moon, Joonoh;Lee, Chang-Hoon;Park, Jun-Young;LEE, Tae-Ho;Hong, Hyun-Uk;Cho, Kyung-Mox
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.47-54
    • /
    • 2016
  • Post-Weld Heat Treatment (PWHT) cracking susceptibility in the weld heat-affected zone (HAZ) of reduced activation ferritic-martensitic (RAFM) steels was evaluated through stress-rupture tests. 9Cr-1W based alloys including different C, Ta and Ti content were prepared. The coarse grained heat-affected zone (CGHAZ) samples were simulated with welding condition of 30 kJ/cm heat input. CGHAZ samples consisted of martensite matrix. Stress rupture experiments were carried out using a Gleeble simulator at temperatures of $650-750^{\circ}C$ and at stress levels of 125-550 MPa, corresponding to PWHT condition. The results revealed that PWHT cracking resistance was improved by Ti addition, i.e., Ti contributed to the formation of fine and stable MX precipitates and suppression of coarse M23C6 carbides, resulting in improvement of stress rupture ductility. Meanwhile, rupture strength increased with increasing solute C content.