DOI QR코드

DOI QR Code

Mechanical Properties and Predictions of Strength of Concrete Containing Recycled Coarse Aggregates

순환굵은골재를 포함하는 콘크리트의 역학적 특성 및 강도 예측

  • Received : 2015.11.03
  • Accepted : 2016.01.13
  • Published : 2016.03.01

Abstract

According to KS and Standard Specifications for Concrete, the compressive strength of concrete containing recycled aggregate is limited to 27 MPa and thereafter there are little research on concrete containing recycled aggregate of its compressive strength of greater than 27 MPa. Therefore, to expand the applicability of concrete recycled coarse aggregate(RCA), this paper concerns the mechanical properties of concrete containing RCA with compressive strength ranging from 30 to 60 MPa. The experimental parameters were water-cement ratio and replacement ratio of RCA. Water-cement ratio(w/c) was 0.36, 0.46 and 0.53, and replacement ratio of RCA was 30, 50, 70 and 100%. The experimental results were discussed about compressive strength, elastic modulus, split tensile strength and modulus of rupture. Test results of elastic modulus were compared to the design code predictions. Experimental elastic modulus for concrete with w/c=0.53 decreased by greater than 10% compared with that for concrete with w/c=0.36. The design code predictions for elastic modulus overestimated the experimental results. Whereas, the design code predictions for modulus of rupture underestimated the measured values.

KS기준 및 콘크리트표준시방서에는 순환골재를 사용한 콘크리트의 압축강도를 27 MPa 이하로 제한하고 있으며, 이에 따라 27 MPa를 초과하는 순환골재 콘크리트에 대한 역학적 특성에 대한 연구결과는 부족한 상황이다. 따라서, 이 연구에서는 순환굵은골재 사용의 확대를 위해 압축강도 30~60 MPa 범주의 굵은순환골재를 사용한 콘크리트의 압축강도를 포함한 역학적 특성을 연구하였다. 실험변수로써 물-시멘트 비와 굵은순환골재의 치환율을 고려하였다. 고려된 물-시멘트 비는 0.36, 0.46 및 0.53 이고, 순환굵은골재의 치환율은 30, 50, 70 및 100%이다. 실험변수에 따른 순환골재 콘크리트의 7일 및 28일 압축강도, 탄성계수, 인장강도 및 파괴계수 특성을 분석하였다. 물-시멘트 비가 0.36일 때의 탄성계수에 비해 0.53일 때의 탄성계수는 10% 이상 감소하였다. 탄성계수 실험결과와 기존설계코드에 의한 탄성계수 예측결과를 비교하였으며, 설계코드에 의한 탄성계수 예측결과는 실험결과를 과다평가하고 있다. 반면에 설계코드에 의한 파괴계수 예측결과는 압축강도 40 MPa 이상의 콘크리트의 파괴계수 실험결과를 과소평가하고 있다.

Keywords

References

  1. American Association of State Highway and Transportation Officials (AASHTO) (2014), AASHTO LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials.
  2. American Concrete Institute (ACI) (2011), Building Code Requirements for Structural Concrete and Commentary, Report ACI 318-11, American Concrete Institute.
  3. Belen, G. F., Fernando, M. A., Diego, C. L., and Sindy, S. P. (2011), Stress-strain Relationship in Axial Compression for Concrete Using Recycled Saturated Coarse Aggregate, Construction and Building Materials, 25, 2335-2342. https://doi.org/10.1016/j.conbuildmat.2010.11.031
  4. Cabral, A. E. B., Schalch, V., Molin, D. C. C. D., and Ribeiro, J. L. D. (2010), Mechanical Properties Modeling of Recycled Aggregate Concrete, Construction and Building Materials, 24, 421-430. https://doi.org/10.1016/j.conbuildmat.2009.10.011
  5. Choi, M. S., Shin, S. W., Lee, K. S., Ahn, J. M., Kang, H., and Jung, J. (2005), Mechanical properties of recycled aggregate concrete, Proceedings of Korea Concrete Institute, 89-92.
  6. Choi, H. B., Kim, B.J., Kang, K.I., and Yi, C.K. (2011), Absorption Properties and Shape of Micro-Cracks Incurred in Recycled Aggregate, Journal of Architectural Institute of Korea, 27(3), 83-90.
  7. Choi, H. B., Shin, Y. S., An, S. H., Chung, H. S., and Kang, K. I. (2007), A Properties and Durability of Recycled Aggregate Concrete, Journal of Architectural Institute of Korea, 23(9), 125-132.
  8. Chung, H. S., Yang, K. H., and Kim, H. H. (2006), The Influence of the Quality and the Replacement Level of Recycled Aggregate on the Mechanical Properties of Concrete, Journal of Architectural Institute of Korea, 22(6), 71-78.
  9. Corinaldesi, V. (2010), Mechanical and Elastic Behaviour of Concretes Made of Recycled-Concrete Coarse Aggregates, Construction and Building Materials, 24, 1616-1620. https://doi.org/10.1016/j.conbuildmat.2010.02.031
  10. Evangelista, L., and de Brito, J. (2007), Mechanical Behaviour of Concrete Made with Fine Recycled Concrete Aggregates, Cement & Concrete Composites, 29, 397-401. https://doi.org/10.1016/j.cemconcomp.2006.12.004
  11. Gayarre, F. L., Perez, C. L. C., Lopez, M. A. S., and Cabo, A. D. (2014), The Effect of Curing Conditions on the Compressive Strength of Recycled Aggregate Concrete, Construction and Building Materials, 53, 260-266. https://doi.org/10.1016/j.conbuildmat.2013.11.112
  12. Huda, S. B., and Alam, M. S. (2014), Mechanical Behavior of Three Generations of 100% Repeated Recycled Coarse Aggregate Concrete, Construction and Building Materials, 65, 574-582. https://doi.org/10.1016/j.conbuildmat.2014.05.010
  13. International Federation for Structural Concrete (fib) (2010), Model Code 2010, fib.
  14. Jang, J. Y., Jin, J. H., Cho, G. T., Nam, Y. K., and Jeon, C. K. (2003), Strength Characteristics of Recycled Concrete by Recycled Aggregate in Incheon Area Waste Concrete, Journal of the Korea Concrete Institute, 15(2), 197-208. https://doi.org/10.4334/JKCI.2003.15.2.197
  15. Jeon, E., Yun, H. D., Ji, S. G., Choi, K. S., You, Y. C., and Kim, K. H. (2009), Mechanical Properties of Ready-Mixed Concrete with Recycled Coarse Aggregates, Journal of Architectural Institute of Korea, 25(8), 103-110.
  16. Kim M. H., Lee, B. H., Kim J. M., and Lee, S. S. (1993), A Fundamental Study on the Applicability of Construction of Recycled Aggregate Concrete (I), Journal of the Korea Concrete Institute, 9(8), 201-211.
  17. Kim, K. H., Shin, M. S., Kong, Y. S., and Cha, S. W. (2013), Effect of Fly Ash on Rheology and Strength of Recycled Aggregate Concrete, Journal of the Korea Concrete Institute, 25(2), 241-250. https://doi.org/10.4334/JKCI.2013.25.2.241
  18. Kim, S. S., Lee, J. B., Ko, J. S., and Kim, I. K. (2013), A Study on the Nano Silica-Sol Coating for Improving Performance of Recycled Aggregate, Journal of the Korea Institute for Structural Maintenance and Inspection, 17(4), 84-90. https://doi.org/10.11112/jksmi.2013.17.4.084
  19. Kim, S. W., Jung, C. K., Lee, S. H., and Kim, K. H. (2011), Experimental Study on Structural Performance of Recycled Coarse Aggregate Concrete Confined by Steel Spirals, Journal of the Korea Institute for Structural Maintenance and Inspection, 15(1), 103-111. https://doi.org/10.11112/jksmi.2011.15.1.103
  20. Kim, S. W., Na, D. S., Lee, D. W., and Kim, B. K. (1996), An experimental study on the strength properties of the recycling aggregate concrete by curing condition, Proceedings of Korea Concrete Institute, 24-30.
  21. Kim. K. W., Li. X. F., Choi. Y. K., Cho. H. W., and Jung. K. D. (1996), Variation of strength characteristics of recycled concrete due to different recycled aggregate contents, Proceedings of Korea Concrete Institute, 32-36.
  22. Korea Concrete Institute (KCI) (2009), Standard Specifications for Concrete Construction, Korea Concrete Institute.
  23. Korea Concrete Institute (KCI) (2012), Specifications for Structural Concrete, Korea Concrete Institute.
  24. KS F 2503 (2007), Testing Method for Density and Absorption of Coarse Aggregate, Korea Agency for Technology and Standards.
  25. KS F 2504 (2007), Testing Method for Density and Absorption of Fine Aggregate, Korea Agency for Technology and Standards.
  26. KS F 2573 (2011), Recycled Aggregate for Concrete, Korean Agency for Technology and Standards.
  27. Lee, M. K., and Youn, G. H. (1999), Mechanical properties of recycled aggregate concrete, Proceedings of Korea Concrete Institute, 119-122.
  28. Lee, M. K., Kim, K. S., Lee, K. H., and Jung, S. H. (2005), Strength of Recycled Concrete with Furnace Slag Cement under Steam Curing Condition, Journal of the Korea Concrete Institute, 17(4), 613-620. https://doi.org/10.4334/JKCI.2005.17.4.613
  29. Lee, Y. O., Jeon, E., Yun, H. D., Choi, K. S., Bae, G. S., and Kim, K. H. (2009), The property of compressive strength according to replacement ratio of recycled aggregate, Proceedings of Korea Concrete Institute, 219-220.
  30. Lee, Y. T., Hong, S. U., Kim, S. H., Beak, S. K., and Cho, Y. S. (2014), Flexural Behavior of High Strength Reinforced Concrete Beams by Replacement Ratios of Recycled Coarse Aggregate, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(1), 1-9. https://doi.org/10.11112/jksmi.2014.18.1.001
  31. Rahal, K. (2007), Mechanical Properties of Concrete with Recycled Coarse Aggregate, Building and Environment, 42, 407-415. https://doi.org/10.1016/j.buildenv.2005.07.033
  32. Shim, J. W. (2010), A Study on the Strength Property of Recycled Fine Aggregate (Wet Type) Mortar with Blast Furnace Slag, Journal of the Korea Institute for Structural Maintenance and Inspection, 14(5), 153-160.
  33. Sim, J. S., Park, C., Park, S. J., and Lee, H. C. (2006), Characterization of Compressive Strength and Elastic Modulus of Recycled Aggregate Concrete with Respect to Replacement Ratios, Journal of the Korean Society of Civil Engineers, 26(1a), 213-218.
  34. Song, S. H., Choi, K. S., You, Y. C., Kim., K. H., and Yun, H. D. (2009), Flexural Behavior of Reinforced Aggregate Concrete Beams, Journal of the Korea Concrete Institute, 21(4), 431-439. https://doi.org/10.4334/JKCI.2009.21.4.431
  35. Xiao, J., Li, J., and Zhang, C. (2005), Mechanical Properties of Recycled Aggregate Concrete under Uniaxial Loading, Cement and Concrete Research, 35, 1187-1194. https://doi.org/10.1016/j.cemconres.2004.09.020
  36. Yang, I. H., and Jeong J. Y. (2016), Effect of Recycled Coarse Aggregate on Compressive Strength and Mechanical Properties of Concrete, Journal of the Korea Concrete Institute, 28(1), 105-113. https://doi.org/10.4334/JKCI.2016.28.1.105
  37. Younis, K. H., and Pilakoutas, K. (2013), Strength Prediction Model and Methods for Improving Recycled Aggregate Concrete, Construction and Building Materials, 49, 688-701. https://doi.org/10.1016/j.conbuildmat.2013.09.003