• 제목/요약/키워드: Rupture Life

검색결과 270건 처리시간 0.022초

스테인리스 강의 단시간 크리프 파단시간의 변동성과 수명예측 (Variability of Short Term Creep Rupture Time and Life Prediction in Stainless Steels)

  • 정원택;공유식;김선진
    • 한국해양공학회지
    • /
    • 제24권6호
    • /
    • pp.97-102
    • /
    • 2010
  • This paper deals with the variability of short term creep rupture time based on previous creep rupture tests and the statistical methodology of the creep life prediction. The results of creep tests performed using constant uniaxial stresses at 600, 650, and $700^{\circ}C$ elevated temperatures were used for a statistical analysis of the inter-specimen variability of the short term creep rupture time. Even under carefully controlled identical testing conditions, the observed short-term creep rupture time showed obvious inter-specimen variability. The statistical aspect of the short term creep rupture time was analyzed using a Weibull statistical analysis. The effect of creep stress on the variability of the creep rupture time was decreased with an increase in the stress level. The effect of the temperature on the variability also decreased with increasing temperature. A long term creep life prediction method that considers this statistical variability is presented. The presented method is in good agreement with the Lason-Miller Parameter (LMP) life prediction method.

최소구속법을 이용한 Type 316LN 강의 크리프 수명 예측 (Creep Life Prediction of Type 316LN Steel Using Minimum Commitment Method)

  • 김우곤;윤송남;류우석;이원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.295-298
    • /
    • 2005
  • A minimum commitment method (MCM) was applied to predict the creep rupture life of type 316LN SS. For this purpose, a number of the creep rupture data for the type 316LN SS were collected through literature survey and experimental data of KAERl, Using the short-term creep rupture data under 2000 hr, the long-term creep rupture life above $10^5$ hour was predicted by means of the MCM. An optimum value of A, P and G function, used in the MCM equation, was determined respectively, and the creep rupture life with the A values in different temperatures was compared with the experimental data and the predicted curves.

  • PDF

보일러관의 수명에 부식이 미치는 영향에 대한 수치해석 (Numerical Analysis of Corrosion Effects on the Life of Boiler Tube)

  • 홍성호;김종성
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2812-2822
    • /
    • 2000
  • Several methods have been developed to predict the rupture time of the boiler tubes in thermal power plant. However, existing life prediction methods give very conservative value at operating stress of power plant and rupture strain cannot be well estimated. Therefore, in this study, rupture time and strain prediction method accounting for creep, corrosion and heat transfer is newly proposed and compared with the current research results. The creep damage evolves by continuous cavity nucleation and constrained cavity growth. The corrosion damage evolves by steam side and fire side corrosion. The results showed good correlation between the theoretically predicted rupture time and the current research results. And rupture strain may be well estimated by using the proposed method.

크리프 파단 데이터의 변동성에 대한 새로운 고찰과 수명예측 (New Considerations on Variability of Creep Rupture Data and Life Prediction)

  • 정원택;공유식;김선진
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1119-1124
    • /
    • 2009
  • This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and $700^{\circ}C$ elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in the creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time (RT) and steady state creep rate (SSCR) on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model.

초고온 가스로용 Alloy 617의 크리프 수명예측 신뢰성 평가 (Reliability Evaluation on Creep Life Prediction of Alloy 617 for a Very High Temperature Reactor)

  • 김우곤;박재영;김선진;홍성덕;김용완
    • 대한금속재료학회지
    • /
    • 제50권10호
    • /
    • pp.721-728
    • /
    • 2012
  • This paper evaluates the reliability of creep rupture life under service conditions of Alloy 617, which is considered as one of the candidate materials for use in a very high temperature reactor (VHTR) system. A Z-parameter, which represents the deviation of creep rupture data from the master curve, was used for the reliability analysis of the creep rupture data of Alloy 617. A Service-condition Creep Rupture Interference (SCRI) model, which can consider both the scattering of the creep rupture data and the fluctuations of temperature and stress under any service conditions, was also used for evaluating the reliability of creep rupture life. The statistical analysis showed that the scattering of creep rupture data based on Z-parameter was supported by normal distribution. The values of reliability decreased rapidly with increasing amplitudes of temperature and stress fluctuations. The results established that the reliability decreased with an increasing service time.

STS304강의 단시간 크리프 파단특성 평가 (Characteristics of Short-Term Creep Rupture in STS304 Steels)

  • 김선진;공유식
    • 한국해양공학회지
    • /
    • 제21권4호
    • /
    • pp.28-33
    • /
    • 2007
  • The objective of this paper is to investigate the relationship between the short-term creep rupture time and the creep rupture properties at three different elevated temperatures in STS304 stainless steel. Uniaxial constant stress creep rupture tests were performed on the steel to observe the creep rupture behaviors at the elevated temperatures of 600, 650 and 700, according to the testing matrix. It is very important to predict creep life in practical creep design problems. As one of the series of studies on the statistical modelling of probabilistic creep rupture time and the development of creep life prediction techniques, the relationship between applied stress and creep rupture behaviors, such as creep strain rate and rupture time, were investigated. In addition, the Monkman-Grant relationship was observed between the steady-state creep rate and the creep rupture time. The creep rupture surfaces observed by SEM showed up dimple phenomenon at all conditions.

재료손상과 입계 미끄럼을 고려한 증기배관의 크리프 파단수명 및 변형률 예측 (Prediction of Creep Rupture Time and Strain of Steam Pipe Accounting for Material Damage and Grain Boundary Sliding)

  • 홍성호
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1182-1189
    • /
    • 1995
  • Several methods have been developed to predict the creep rupture time of the steam pipes in thermal power plant. However, existing creep life prediction methods give very conservative value at operating stress of power plant and creep rupture strain cannot be well estimated. Therefore, in this study, creep rupture time and strain prediction method accounting for material damage and grain boundary sliding is newly proposed and compared with the existing experimental data. The creep damage evolves by continuous cavity nucleation and constrained cavity growth. The results showed good correlation between the theoretically predicted creep rupture time and the experimental data. And creep rupture strain may be well estimated by using the proposed method.

2024 Al 合金의 高溫正常 크리이프 變形速度와 크리이프 破斷壽命에 관한 硏究 (The steady-state creep rate and creep-rupture life of 2024 Al alloy at high temperature)

  • 오세욱;박경동;박인석
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.513-519
    • /
    • 1988
  • 본 연구에서는 주로 항공기의 구조물용으로 사용되고 있는 소위 초듀랄루민이 라 불리는 산업용 2024Al합금에 대하여 3~5kg/m $m^{2}$의 응력범위 및 0.6~0.7Tm의 온도범위에서의 고온크리이프 시험을 통하여 고온정상크리이프 변형속도 및 크리이프 파단수명에 대하여 살펴보고자 한다.

온도 변동하의 A1 7075 합금의 크리이프 및 파단수명 (Creep and Rupture Life of Al 7075 alloy under step-wise temperature cycling)

  • 김창건;강대민;구양;박경동;백남주
    • 한국안전학회지
    • /
    • 제4권1호
    • /
    • pp.25-39
    • /
    • 1989
  • Cyclic temperature creep tests were carried out an AS 7075 alloy specimens were subjected to a constant load and stepwise temperature cycles in which temperature was fluctuated between 30$0^{\circ}C$ and 25$0^{\circ}C$ with three different cycle ratios. The highest frequency of cycling was 1 cycle per 10 hr and the lowest one was 1 cycle per 12 hr. From the creep experimental results with the above conditions the creep strain under cyclic temperature can be predicted easily by introd ucing the equivalent steady temperature because defined by Eq.(16), but the rupture life is 1.1 time than those of constant temperature because of effect of temperature history at tertiary creep range. Besides thlis result, the results of the creep test under cyclic temperature conditions are respectively compayiea with calculated rupture lives using the life fraction law and Eq.(18). The agreement between the obseried rupture times and calculated ones is fairly good. So creep rupture lives can be respectively predicted using life fraction law and Eq.(18).

  • PDF

Relationship between Anatomical Properties and Modulus of Rupture (MOR) of Larix kaempferi Carr

  • Oh, Seung-Won
    • 농업생명과학연구
    • /
    • 제45권1호
    • /
    • pp.9-14
    • /
    • 2011
  • Larix kaempferi is a tree with a major economic impact and is processed in large quantity every year in Korea. This study was carried out to collect basic data for the reasonable use of Larix kaempferi and to investigate the relation between anatomical properties and modulus of rupture (MOR) for heartwood and sapwood. As the length of earlywood tracheid and the radial wall thickness of earlywood tracheid and latewood tracheid increased, the modulus of rupture (MOR) increased, but decreased with increasing microfibril angle. Statistical analysis by the stepwise regression technique shows that the main factors affecting the modulus of rupture (MOR) of heartwood are the microfibril angle and the radial wall thickness of latewood tracheid, while those affecting MOR of sapwood are the length of earlywood tracheid and the microfibril angle.