• Title/Summary/Keyword: Runoff water quality

Search Result 579, Processing Time 0.021 seconds

Analysis of NPS Pollution Loads over Rainfall-Runoff Events from the Silica Mine Site (규사광산 지역의 강우시 비점오염원의 유출분석)

  • Choi, Yong-hun;Won, Chul-hee;Seo, Ji-yeon;Shin, Min-Hwan;Yang, Hee-Jeong;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.413-419
    • /
    • 2010
  • A silica mine monitoring was conducted from March to December in 2008 to measure rainfall, runoff amounts and pollution loads. A total of 13 rainfall-runoff events were measured and analyzed with respect to runoff ratio, pollutant concentration and load, and initial flush. Over rainfall-runoff events, 95% confidence range of SS concentration was 942.5~2,056.2 mg/L. Other measured water quality indices also showed relatively large variation. This wide concentration variation was thought to be caused by the bare working ground of the mine that was used to store, process and transport the mined silica. Total pollution load of the 13 rainfall-runoff events was SS 17,901 kg/ha, $COD_{Cr}$ 160.9 kg/ha, $COD_{Mn}$ 111.24 kg/ha, BOD 79.6 kg/ha, T-N 13.8 kg/ha, T-P 3.5 kg/ha, and TOC 39.3 kg/ha. Initial flush was not well observed except SS. Very high SS concentration and load was occurred when rainfall was large. Therefore, it was recommended to manage the bare ground not to discharge excessive pollutants during wet days by covering the ground or constructing runoff treatment systems such as a sediment basin.

Characteristics of Storm Runoff and Analysis of Its Correlation with Forest Properties (산림특성에 따른 강우유출수 유출특성 및 상관관계 분석)

  • Chung, WooJin;Chang, SoonWoong
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1007-1016
    • /
    • 2016
  • Environmental policy implementation has been strengthened to protect the source waters in Korea and to improve their water quality. Increasing of non-point source caused water quality problem continuously. Research on runoff from forests, which occupy over 65% of the land in korea, is insufficient, and studies on the characteristics and influences of storm runoff are necessary. In this study, we chose to compare the effects of land use in the form of two types of forest distribution and then gathered data on storm characteristics and runoff properties during rainfall events in these areas. Furthermore, the significance and influences of the discharges were analyzed through correlation analysis, and multilateral runoff characteristics were examined by deducing a formula through $COD_{Mn}$ and TOC regression analysis. At two forest points, for which the basin areas differed from each other, flow changed according to storm quantity and intensity. The peak discharge at point A, where the basin area was big, was high, whereas water-quality fundamental items (BOD, $COD_{Mn}$, and SS) and TOC density were high at point B where the slope and storm intensity were high. Effects of dissolved organic matter were determined through correlation analysis, and the regression formulas for $COD_{Mn}$ and TOC were deduced by regression analysis. It is expected that the data from this study could be useful as basic information in establishing forest management measures.

Watershed Selection for Diffuse Pollution Management Based on Flow Regime Alteration and Water Quality Variation Analysis (유황분석과 수질변화 평가를 통한 비점오염원 관리대상지역 선정방법 연구)

  • Jung, Woohyeuk;Yi, Sangjin;Kim, Geonha;Jeong, Sangman
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.228-234
    • /
    • 2011
  • The goal of water quality management on stream and watershed is to focus not on discharged loads management but on a water quality management. Discharged loads management is not goal of water quality management but way for perform with total maximum daily loads management. It is necessary to estimate the relation between non-point source with stromwater runoff (NPSSR) and water quality to select a watershed where it is required to manage NPSSR for water quality improvement. To evaluate the effects of NPSSR on stream's water quality, we compare the aspects of water quality in dry and wet seasons using flow duration curve analysis based on flow rate variation data by actual surveying. In this study we attempt to quantify the variation characteristic of water quality and estimate the Inflow characteristic of pollution source with water quality and flow rate monitoring on 10 watersheds. We try to estimate water quality and flow rate by regression analysis and try again regression analysis with each high and low water quality data more than estimations. An analysis of relation between water quality and flow rate of 10 watersheds shows that the water quality of the Nonsan and the Ganggyeong streams had been polluted by NPSSR pollutants. Other eight streams were important point source more than NPSSR. It is wide variation range of $BOD_5$ also high average concentration of $BOD_5$. We have to quantify water quality variation by cv1 in wet season and cv365 in dry season with comparing the estimate of high water quality and low water quality. This method can be used to indicator for water quality variation according to flow rate.

Effect of Improved Runoff Module in SWAT on Water Quality Simulation (SWAT 모형의 유출해석모듈 개선이 수질모의에 미치는 영향)

  • Kim, Nam-Won;Shin, Ah-Hyun;Lee, Jeong-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.297-307
    • /
    • 2009
  • For reliable water quality simulation by semi distributed model, accurate daily runoff simulation should have preceded. In this study, newly developed channel routing method which is nonlinear storage method is combination of Muskingum routing method and variable storage routing method and temporally weighted average curve number method were applied for effect analysis of water quality simulation. Developed modules, which are added in SWAT models and simulation, were conducted for the Chungju dam watershed. The simulation result by each module applied effect. As a result of analysis contribute water quality modeling, nonlinear storage method is more effective than temporally weighted average curve number method. Nutrient loading discharge was affected by development of runoff delaying from improvement of channel routing, because of characteristics of nonpoint source pollution.

Application of Common Land Model in the Nakdong River Basin, Korea for Simulation of Runoff and Land Surface Temperature (Common Land Model의 국내 적용성 평가를 위한 유량 및 지면온도 모의)

  • Lee, Keon Haeng;Choi, Hyun Il;Kwon, Hyun Han;Kim, Sangdan;Chung, Eu Gene;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.247-258
    • /
    • 2013
  • A grid-based configuration of Land Surface Models (LSMs) coupled with a climate model can be advantageous in impact assessment of climate change for a large scale area. We assessed the applicability of Common Land Model (CoLM) to runoff and land surface temperature (LST) simulations at the domain that encompasses the Nakdong river basin. To establish a high resolution model configuration of a $1km{\times}1km$ grid size, both surface boundary condition and atmospheric inputs from the observed weather data in 2009 were adjusted to the same resolution. The Leaf Area Index (LAI) was collected from MODerate esolution Imaging Spectroradiometer (MODIS) and the downward short wave flux was produced by a nonstationary multi-site weather state model. Compared with the observed runoffs at the stations on Nakdong river, simulated runoffs properly responded to rainfall. The spatial features and the seasonal variations of the domain fairly well were captured in the simulated LSTs as well. The monthly and seasonal trend of LST were described well compared to the observations, however, the monthly averaged simulated LST exceeded the observed up to $2^{\circ}C$ at the 24 stations. From the results of our study, it is shown that high resolution LSMs can be used to evaluate not only quantity but also quality of water resources as it can capture the geographical features of the area of interest and its rainfall-runoff response.

EPIC Simulation of Water Quality from Land Application of Poultry Litter

  • Yoon, Kwang-Sik
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.38-49
    • /
    • 2000
  • Two application rates (9 and 18 t/ha) of poultry litter and a recommended rate of commercial fertilizer were studied to determine their effects on nutrient (N and P) losses in surface and subsurface runoff and loadings in soil layers from conventionally-tilled com by the treatments. The model predicted higher sediment losses than observed data from all treatments. The overpredicted sediment losses resulted in overprediction of organic-N and sediment-P losses in surface runoff. Simulated soluble-P losses in surface runoff were close to observed data, while NO3-N losses in surface runoff were underpredicted from all treatments. Observed NO3-N concentrations in leachate at 1.0-m depth from commercial fertilizer treatment were fairly well predicted. But the concentratins were overpredicted from poultry litter treatments due to high simulation of organic-N mineralization simulated by the model.

  • PDF

Development of the Annual Runoff Estimation Model (연유출량 추정모형 개발)

  • 김양수;정상만;서병하
    • Water for future
    • /
    • v.24 no.3
    • /
    • pp.95-104
    • /
    • 1991
  • The study was focused on developing a new model to estimate annual runoff. This model can be used to estimate the available water resources for ungaged catchments for long-term water resources development planning. Data used in the model development were daily rainfall and daily runoff of the sample basin with record length from 1945 to 1988 years in Korea. The sample basin selected by consideration whether the flow is virgin and quality of discharge data is good. As a result, 46 stage gaging station were selected. Annual runoff was determined by sum of daily runoff calculated by daily stage data of the sample basin. Also, the annual mean precipitation by using daily rainfall data was estimated and the annual runoff ratio for each sample basin was calculated, and the annual mean runoff ratio was estimated. The linear regression model was proposed and calibrated using auunal mean precipitation values and geomorphological characteristics of the basins. To verify reasonableness of this model, the regression model was applied to the gaging stations which have historical data.

  • PDF

Operational Hydrological Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 실시간 수문 유출 예측)

  • Shin, Changmin;Na, Eunye;Lee, Eunjeong;Kim, Dukgil;Min, Joong-Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.212-222
    • /
    • 2013
  • A watershed model was constructed using Hydrological Simulation Program Fortran to quantitatively predict the stream flows at major tributaries of Nakdong River basin, Korea. The entire basin was divided into 32 segments to effectively account for spatial variations in meteorological data and land segment parameter values of each tributary. The model was calibrated at ten tributaries including main stream of the river for a three-year period (2008 to 2010). The deviation values (Dv) of runoff volumes for operational stream flow forecasting for a six month period (2012.1.2 to 2012.6.29) at the ten tributaries ranged from -38.1 to 23.6%, which is on average 7.8% higher than those of runoff volumes for model calibration (-12.5 to 8.2%). The increased prediction errors were mainly from the uncertainties of numerical weather prediction modeling; nevertheless the stream flow forecasting results presented in this study were in a good agreement with the measured data.

Application of BASINS for the water quality prediction in rural watersheds - on HSPF model - (농촌유역의 수질예측을 위한 BASINS의 적용 - HSPF모형을 중심으로 -)

  • Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.403-407
    • /
    • 2001
  • For the water quality management of stream and lake, it is important to estimate and control nonpoint source loading to meet the water quality standard. So, integrated watershed management is required. BASINS is a multipurpose environmental analysis system for use by regional, state, and local agencies in performing watershed and water quality based studies. BASINS was developed by the USEPA to facilitate examination of environmental information, to support analysis of environmental systems and to provide a framework for examining management alternatives. BASINS contains HSPF which is one of the watershed runoff model. By using HSPF, nonpoint source loading from upper stream watershed was estimated. As a result, the simulated runoff was in a good agreement with the observed data and indicated reasonable applicability for whole watershed.

  • PDF

The Improvement on the Empirical Formula of Stormwater Captured Ratio for Water Quality Volume Based Non-Point Pollutants Water Quality Control Basins (WQV 기반 비점오염저감시설의 강우유출수 처리비 경험공식의 개선)

  • Choi, Daegyu;Park, Moo Jong;Park, Bae Kyung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.87-94
    • /
    • 2014
  • According to the technical guideline of water pollutant load management, the rainfall captured ratio which can be estimated by the empirical formula is an important element to estimate reduction loads of non-point pollutants water quality control basin. In this study, the rainfall captured ratio is altered to stormwater captured ratio considering its meaning in the technical guideline of water pollutant load management, and the new empircal formula of stormwater captured ratio is suggested. In order to do this, we calculate stormwater captured ratio by using the hourly rainfall data of seven urban weather stations (Busan, Daegu, Daejeon, Gangreung, Seoul, Gwangju, and Jeju) for 43 years. The regression coefficients of the existed empirical formula cannot reflect the catchment properties at all, because they are fixed values regardless of regions. However the empirical formula of stormwater captured ratio has flexible regression coefficients by runoff coefficient(C), so it is allowed to consider the characteristics of runoff in catchment. It is expected that reduction loads of storage based water quality control basin can be more reasonably estimated than before.