• Title/Summary/Keyword: Runoff water quality

Search Result 579, Processing Time 0.026 seconds

APPLICATION AND EVALUATION OF THE GLEAMS MODEL TO A CATTLE GRAZING PASTURE FIELD IN NORTH ALABAMA

  • Kang, M. S.;P. prem, P.-Prem;Yoo, K. H.;Im, Sang-Jun
    • Water Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.55-68
    • /
    • 2004
  • The GLEAMS (Groundwater Loading Effects of Agricultural Management System, version 3.0) water quality model was used to predict hydrology and water quality and to evaluate the effects of soil types from a cattle-grazed pasture field of Bermuda-Rye grass rotation with poultry litter application as a fertilizer in North Alabama. The model was applied and evaluated by using four years (1999-2002) of field-measured data to compare the simulated results for the 2.71- ha Summerford watershed. $R^2$ values between observed and simulated runoff, sediment yields, TN, and TP were 0.91, 0.86, 0.95, and 0.69, respectively. EI (Efficiency Index) of these parameters were 0.86, 0.67, 0.70, and 0.48, respectively. The statistical parameters indicated that GLEAMS provided a reasonable estimation of the runoff, sediment yield, and nutrient losses at the studied watershed. The soil infiltration rates were compared with the rainfall events. Only high intensity rainfall events generated runoff from the watershed. The measured and predicted infiltration rates were higher during dry soil conditions than wet soil conditions. The ratio of runoff to precipitation was ranging from 2.2% to 8.8% with average of 4.3%. This shows that the project site had high infiltration and evapotranspiration which generated the low runoff. The ratio of runoff to precipitation according to soil types by the GLEAMS model appeared that Sa (Sequatchie fine sandy loam) soil type was higher and Wc (Waynesboro fine sandy loam, severely eroded rolling phase) soil type relatively lower than the weighted average of the soil types in the watershed. The model under-predicted runoff, sediment yields, TN, and TP in Wb (Waynesboro fine sandy loam, eroded undulating phase) and Wc soil types. General tendency of the predicted data was similar for all soil types. The model predicted the highest runoff in Sa soil type by 105% of the weighted average and the lowest runoff in Wc soil type by 87% of the weighted average

  • PDF

Quantitative Estimation of Nonpoint Source Load by BASINS/HSPF (BASINS/HSPF 모형을 활용한 비점오염부하의 정량적 평가)

  • Lee, Jae-Woon;Kwon, Hun-Gak;Yi, Youn-Jeong;Yoon, Jong-Su;Han, Kun-Yeun;Cheon, Se-Uk
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.965-975
    • /
    • 2012
  • Loading of NPS pollutant was valued through simulation by using BASINS/HSPF model which can simulate runoff volume in rainfall by time. For the verification of the model, it was analyzed the scatter diagram of the simulation value and measure value of water quality and runoff volume in Dongcheon estuary. Using the built model, a study on the time-variant characteristics of runoff and water quality was simulated by being classified into four cases. The result showed the simulation value was nearly same as that of the measured runoff. In the result of fit level test for measured value and simulated value, correlation of runoff volume was computed high by average 0.86 and in the water quality items, fit level of simulation and measurements was high by BOD 0.82, T-N 0.85 and T-P 0.79.

Evaluation of Estimated Storm runoff and Non-point Pollutant Discharge from Upper Watershed of Daecheong Reservoir during Rainy Season using L-THIA ArcView GIS Model (L-THIA ArcView GIS 모형을 이용한 대청호 만입부 유역의 직접유출 및 비점오염배출부하 산정 적용성 평가)

  • Choi, Jaewan;Lee, Hyuk;Shin, Dong-Seok;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.984-993
    • /
    • 2009
  • There have been growing concerns of algal growth at Daecheong reservoir due to eutrophication with excess nutrient inflow. Rainfall-driven runoff and pollutant from watershed are responsible for eutrophication of the Daecheong reservoir. In this study, two subwatersheds of the Daecheong reservoir were selected and water quality characteristics were analyzed. The L-THIA ArcView GIS model was used for evaluation of direct runoff and water quality. The $R^2$ and the EI value for direct runoff were 0.95 and 0.93 at Wol-oe watershed and were 0.81, 0.71 at An-nae watershed, respectively. The $R^2$ for SS, T-P were 0.53, 0.95 at Wol-oe watershed and 0.89, 0.89 at An-nae watershed, respectively. It has been proven that the L-THIA ArcView GIS model could be used for evaluating direct runoff and pollutant load from the watershed with reasonable accuracies.

Effects of Digital Elevation Model in Water Quality Modeling using Geogrpahic Information System

  • Cho, Sung-Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.14-19
    • /
    • 2021
  • Aim of this research was to investigate the effects of Digital Elevation Model (DEM) for sensitivity analysis with two types of DEMs: 1 to 24,000 and 1 to 250,000 DEM. Another emphasis was given to the development of methodology for processing DEMs to create ArcGIS Pro and GRASS layers. This was done while developing water quality system modeling using DEMs which were used to model hydrological processes and SWAT model. Sensitivity analysis with DEMs resulted in different runoff volumes in the model simulation. Runoff volume was higher for the 1:24,000 DEM than 1:250,000 DEM, probably due to the finer resolution and slope which increased the estimated runoff from the watershed. Certainly the DEMs were factors in precision of the simulations and it was obvious during sensitivity analysis that DEMs had significant effect on runoff volumes. We suggest, however, that additional comparative research could be conducted involving more parameters such as soil and hydrologic parameters to provide insight into the overall physical system which the SWAT model represents.

Application of SOM for the Detection of Spatial Distribution considering the Analysis of Basic Statistics for Water Quality and Runoff Data (수질 및 유량자료의 기초통계량 분석에 따른 공간분포 파악을 위한 SOM의 적용)

  • Jin, Young-Hoon;Kim, Yong-Gu;Roh, Kyong-Bum;Park, Sung-Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.735-741
    • /
    • 2009
  • In order to support the basic information for planning and performing the environment management such as Total Maximum Daily Loads (TMDLs), it is highly recommended to understand the spatial distribution of water quality and runoff data in the unit watersheds. Therefore, in the present study, we applied Self-Organizing Map (SOM) to detect the characteristics of spatial distribution of Biological Oxygen Demand (BOD) concentration and runoff data which have been measured in the Yeongsan, Seomjin, and Tamjin River basins. For the purpose, the input dataset for SOM was constructed with the mean, standard deviation, skewness, and kurtosis values of the respective data measured from the stations of 22-subbasins in the rivers. The results showed that the $4{\times}4$ array structure of SOM was selected by the trial and error method and the best performance was revealed when it classified the stations into three clusters according to the basic statistics. The cluster-1 and 2 were classified primarily by the skewness and kurtosis of runoff data and the cluster-3 including the basic statistics of YB_B, YB_C, and YB_D stations was clearly decomposed by the mean value of BOD concentration showing the worst condition of water quality among the three clusters. Consequently, the methodology based on the SOM proposed in the present study can be considered that it is highly applicable to detect the spatial distribution of BOD concentration and runoff data and it can be used effectively for the further utilization using different water quality items as a data analysis tool.

Correlativity Analysis between Water Quality Items in the Dowoncheon Basin for Agricultural Watershed Management (농업유역관리를 위한 도원천유역의 수질항목간 상관성 분석)

  • Son Jae-Gwon;Choi Jin-Kyu;Koo Ja-Woong;Song Jae-Do;Cho Jae-Young;Kim Young-Ju
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.77-86
    • /
    • 2006
  • This study was performed to investigate the stream water quality characteristics in the Dowoncheon basin of Dongjin River during the 12 months from January to December in 2005. Also, pollutant loads were calculated on the basis of the water quality and runoff results. The measured pH and EC of the stream water were ranged 6.48-7.32, $18.06{\sim}38.60{\mu}S/cm$, respectively. The concentration of DO, BOD, COD, SS, T-N and T-P were observed as 4.90-11.50 mg/L, 0.5-6.0 mg/L, 1.22-18.46 mg/L, 1.0-2,124.0 mg/L, 1.35-5.67 mg/L, 0.02-0.43 mg/L respectively. T-N showed low correlativity with other water quality parameters. However, T-P had very high correlativity with COD and SS. In the meantime, the runoff pollutant loads of T-N, T-P were estimated as 72,114 kg/yr, 5,027 kg/yr. In the case of the correlativity between runoff pollutant loads and concentrations, T-N did not show significant relationships, while T-P had significant relationships.

Environmental Aspect of Runoff Water from Miscanthus Production Field (억새 재배지에서의 강우 유출수 수질 특성 분석)

  • Hong, Seong Gu;Park, Seong Jik;Kang, Ku
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.113-120
    • /
    • 2013
  • Miscanthus is one of the promising energy crops for producing bioethanol or bioenergy in many countries. A field of about 180 ha for miscanthus plantation was started for demonstration near Geum River in 2011. Since the size of the field is much larger than those of traditional cultivation for one single crop in this country, questions were raised if there are any environmental impacts from the energy crop plantation, particularly on water quality. In this study, water quality of runoff water from three different plots was analyzed for assessing the impacts of energy crop production. The results showed that there were no substantial differences among the plots; control, the first, and the second year growth fields. The concentrations of COD, T-N, and T-P were lower than those in runoff water from agricultural crop fields. The second year field showed a slight higher values of COD and T-N concentrations due to the biodegradation of residue of miscanthus which was not cultivated for observation. Commercial planation of miscanthus in a large scale would not result in a water quality problem when avoiding application of fertilizer as practiced in agricultural crop fields.

Application Analysis of HSPF Model Considering Watershed Scale in Hwang River Basin (황강유역에서의 유역규모를 고려한 HSPF 모형의 적용성 평가)

  • Choi, Hyun Gu;Han, Kun Yeun;Hwangbo, Hyun;Cho, Wan Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.509-521
    • /
    • 2011
  • The purpose of this study is to estimate overall reliability and applicability of the watershed modeling for systematic management of point and non-point sources via water quality analysis and prediction of runoff discharge within watershed. Recently, runoff characteristics and pollutant characteristics have been changing in watershed by anomaly climate and urbanization. In this study, the effects of watershed scale were analyzed in runoff and water quality modeling using HSPF. In case of correlation coefficient, its range was from 0.936 to 0.984 in case A(divided - 2 small watersheds). On the other hand, its range was form 0.840 to 0.899 in case B(united - 1 watershed). In case of Nash-Sutcliffe coefficient, its range was from 0.718 to 0.966 in case A. On the other hand, its range was from 0.441 to 0.683 in case B. As a result, it was judged that case A was more accurate than case B. Therefore, runoff and water quality modeling in minimum watershed scale that was provided data for calibration and verification was judged to be favorable in accuracy. If optimal watershed dividing and parameter optimization using PEST in HSPF with more reliable measured data are carried out, more accurate runoff and water quality modeling will be performed.

Evaluation of NPS Pollutant Loads from Clayey Loam Fields (점토질 롬 밭과 논의 비점오염원 부하량 평가)

  • Choi, Joong-Dae;Kwun, Soon-Kuk;Kwon, Gi-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.107-114
    • /
    • 2004
  • NPS pollutant loads from sandy clayey and clayey loam runoff plots were measured. Runoff plots were 2$\times$10 m in size and 8~10% in slope and paddy area was 4,620 $m^2$. Soybean, corn, tobacco and control (natural weed) were cultured. Precipitation during the growing season of June to October, 2002 was 869.5 mm. Runoff and water quality were measured more than 10 times during the measurements depending on the growing stage. Pollutants loads were estimated by using respective concentration and runoff volume. Runoff occurred when daily rainfall exceeded about 30 mm. The largest runoff was observed from the paddy but pollutant loads were larger from upland crops than those from paddy. SS loads from paddy and upland were 1.4 ton/ha/yr and 3.1~4.3 ton/ha/yr, respectively. COD loads 30 kg/ha/yr and 66~90 kg/ha/yr, T-N loads 13 kg/ha/yr and 14~23 kg/ha/yr, T-P loads 1 kg/ha/yr와 4 kg/ha/yr, nitrate nitrogen loads 1 kg/ha/yr and 4~8 kg/ha/yr, and phosphate phosphorus loads 0 kg/ha/yr and 4~6 kg/ha/yr, respectively. It was concluded that NPS pollutant loads from upland crop culture have greater impact on the quality of the receiving water body than those from paddy culture.

Evaluation of Runoff Loads and Computing of Contribute ratio by First Flush Stormwater from Cheongyang-Hongseong Road (청양-홍성간 도로에서의 초기강우에 의한 유출부하량 평가 및 기여율 산정)

  • Lee, Chun-Won;Kang, Seon-Hong;Choi, I-Song;An, Tae-Ung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.407-417
    • /
    • 2011
  • Nowadays, the high land use, mainly used for urbanization, is affecting runoff loads of non-point pollutants to increase. According to this fact, increasing runoff loads seems like to appear that it contributes to high ratio of pollution loads in the whole the pollution loads and that this non-point source is the main cause of water becoming worse quality. Especially, concentrated pollutants on the impermeable roads run off to the public water bodies. Also the coefficient of runoff from roads is high with a fast velocity of runoff, which ends up with consequence that a lot of pollutants runoff happens when it is raining. Therefore it is very important project to evaluate the quantity of pollutant loads. In this study, I computed the pollutant loadings depending on time and rainfall to analyze characteristics of runoff while first flush storm water and evaluated the runoff time while first flush storm water and rainfall based on the change in curves on the graph. I also computed contribution ratio to identify its impact on water quality of stream. I realized that the management and treatment of first flush storm water effluents is very important for the management of road's non-point source pollutants because runoff loads of non-point source pollution are over the 80% of whole loads of stream. Also according to the evaluation of runoff loads of first flush storm water for SS, run off time was shown under the 30 minute and rainfall was shown under the 5mm which is less than 20% of whole rainfall. These are under 5mm which is regarded amount of first flush storm water by the Ministry of Environment and it is judged to be because run off by rainfall is very fast on impermeable roads. Also, run off time and rainfall of BOD is higher than SS. Therefore I realized that the management of non-point source should be managed and done differently depending on each material. Finally, the contribution ratio of pollutants loads by rainfall-runoff was shown SS 12.7%, BOD 12.7%, COD 15.9%, T-N 4.9%, T-P 8.9%, however, the pollutants loads flowing into the steam was shown 4.4%. This represents that the concentration of non-point pollutants is relatively higher and we should find the methodical management and should be concerned about non-point source for improvement on water quality of streams.