• Title/Summary/Keyword: Runoff volume

Search Result 320, Processing Time 0.032 seconds

Sensitivity of Runoff and Soil Erosion in the Burnt Mountains (산불지역의 유출 및 토양침식 민감도)

  • Park, Sang-Deog;Shin, Seung-Sook;Lee, Kyu-Song
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.59-71
    • /
    • 2005
  • Mountain watersheds are a lot of problems about soil erosion because of frequent wildfire occurrence. Runoff and soil erosion caused by the rain on a hillslope after wildfire are dependent on cover factor. And these has been a decrease by the cover factor recovery following time passage. The present paper defines the dynamic sensitivity of runoff and soil erosion that is the rate of runoff volume and soil erosion weight to rainfall energy and analyzes characteristics of the sensitivity for variation of cover factor, In according to the correlation analysis between other parameters and sensitivities, the sensitivity is the most dependent on the cover factor and the relation is exponential. The sensitivities after wildfire have suitable relation with treatment method for the mitigation of burnt forest and wildfire intensity. It was confirmed that the variation of soil erosion sensitivities come upon the range of stability in 5 years after wildfire.

Low Impact Urban Development For Climate Change and Natural Disaster Prevention

  • Lee, Jung-Min;Jin, Kyu-Nam;Sim, Young-Jong;Kim, Hyo-Jin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.54-55
    • /
    • 2015
  • Increase of impervious areas due to expansion of housing area, commercial and business building of urban is resulting in property change of stormwater runoff. Also, rapid urbanization and heavy rain due to climate change lead to urban flood and debris flow damage. In 2010 and 2011, Seoul had experienced shocking flooding damages by heavy rain. All these have led to increased interest in applying LID and decentralized rainwater management as a means of urban hydrologic cycle restoration and Natural Disaster Prevention such as flooding and so on. Urban development is a cause of expansion of impervious area. It reduces infiltration of rain water and may increase runoff volume from storms. Low Impact Development (LID) methods is to mimic the predevelopment site hydrology by using site design techniques that store, infiltrate, evaporate, detain runoff, and reduction flooding. Use of these techniques helps to reduce off-site runoff and ensure adequate groundwater recharge. The contents of this paper include a hydrologic analysis on a site and an evaluation of flooding reduction effect of LID practice facilities planned on the site. The region of this Case study is LID Rainwater Management Demonstration District in A-new town and P-new town, Korea. LID Practice facilities were designed on the area of rainwater management demonstration district in new town. We performed analysis of reduction effect about flood discharge. SWMM5 has been developed as a model to analyze the hydrologic impacts of LID facilities. For this study, we used weather data for around 38 years from January 1973 to August 2014 collected from the new town City Observatory near the district. Using the weather data, we performed continuous simulation of urban runoff in order to analyze impacts on the Stream from the development of the district and the installation of LID facilities. This is a new approach to stormwater management system which is different from existing end-of-pipe type management system. We suggest that LID should be discussed as a efficient method of urban disasters and climate change control in future land use, sewer and stormwater management planning.

  • PDF

A study on the rainfall-runoff reduction efficiency on each design rainfall for the green infrastructure-baesd stormwater management (그린인프라 기반 빗물 관리를 위한 설계강우량별 강우-유출저감 효율성 분석 연구)

  • Kim, Byungsung;Kim, Jaemoon;Lee, Sangjin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.613-621
    • /
    • 2022
  • Due to the global climate change, the rainfall volume and frequency on the Korean Peninsula are predicted to increase at the end of the 21st century. In addition, impervious surface areas have increased due to rapid urbanization which has caused the urban water cycle to deteriorate. Green Infrastructure (GI) researches have been conducted to improve the water cycle soundness; the efficiency of this technique has been verified through various studies. However, there are still no suitable GI design guidelines for this aspect. Therefore, the rainfall scenarios are set up for each percentile (60, 70, 80, 90) based on the volume and frequency analysis using 10-year rainfall data (Busan Meteorological Station). After determining the GI areas for each scenario, the runoff reduction characteristics are analyzed based on Storm Water Management Model (SWMM) 10-year rainfall-runoff-simulations. The total runoff reduction efficiency for each GI areas are computed to have a range of 13.1~52.1%. As a results of the quantitative analysis, the design rainfall for GI is classified into the 80~85 percentile in the study site.

Real-time Flood Forecasting Model Based on the Condition of Soil Moisture in the Watershed (유역토양수분 추적에 의한 실시간 홍수예측모형)

  • 김태철;박승기;문종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.81-89
    • /
    • 1995
  • One of the most difficult problem to estimate the flood inflow is how to understand the effective rainfall. The effective rainfall is absolutely influenced by the condition of soil moisture in the watershed just before the storm event. DAWAST model developed to simulate the daily streamflow considering the meteologic and geographic characteristics in the Korean watersheds was applied to understand the soil moisture and estimate the effective rainfall rather accurately through the daily water balance in the watershed. From this soil moisture and effective rainfall, concentration time, dimensionless hydrograph, and addition of baseflow, the rainfall-runoff model for flood flow was developed by converting the concept of long-term runoff into short-term runoff. And, real-time flood forecasting model was also developed to forecast the flood-inflow hydrograph to the river and reservoir, and called RETFLO model. According to the model verification, RETFLO model can be practically applied to the medium and small river and reservoir to forecast the flood hydrograph with peak discharge, peak time, and volume. Consequently, flood forecasting and warning system in the river and the reservoir can be greatly improved by using personal computer.

  • PDF

Quantitative Estimation of Pollution Loading from Hwaseong Watershed using BASINS/HSPF (BASINS/HSPF를 이용한 화성유역 오염부하량의 정량적 평가)

  • Jung, Kwang-Wook;Yoon, Chun-G.;Jang, Jae-Ho;Kim, Hyung-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.61-74
    • /
    • 2007
  • A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency (EPA) was applied to Hwaseong watershed. It was run under BASINS (Better Assessment Science for Integrating Point and Nonpoint Sources) program, and the model was validated using monitoring data of $2002{\sim}2005$. The model efficiency of runoff ranged from good to fair in comparison between simulated and observed data, while it was from very good to poor in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The nonpoint source (NPS) loading for T-N and T-P during the monsoon rainy season (June to September) was about 80% of total NPS loading, and runoff volume was also in a similar range. However, NPS loading for BOD ($55{\sim}60%$) didn't depend on rainfall because BOD was mostly discharged from point source (more than 70%). And water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. BASINS/HSPF was applied to the Hwaseong watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and nonpoint sources in watershed scale.

Impacts on water-cycle by land use change and effects of infiltration trenches in Asan New town (토지이용 변화가 물순환에 미치는 영향과 침투트렌치 설치 효과 분석 - A 신도시 지구를 중심으로 -)

  • Hyun, Kyoung-Hak;Lee, Jung-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.691-701
    • /
    • 2010
  • As the water-cycle is transformed by increasing of the impermeable area in process of urbanization, decentralized rainwater management facilities(infiltration, harvesting and retention facilities) as source control are considered to be a method of restoring water-cycle of urban and reducing runoff. SWMM model was used to analyse the change of water-cycle structure before and after development in A new town watershed. Modified SWMM code was developed to apply infiltration facilities. The modified SWMM was used to analyse the change of water-cycle before and after infiltration trench setup in AJ subcatchment. Changes of the impervious area by development and consequent increase in runoff were analyzed. These analyses were performed by a day rainfall during ten years from 1998 to 2007. According to the results, surface runoff increased from 51.85% to 65.25 %, and total infiltration volume decreased from 34.15 % to 21.08 % in A newtown watershed. If more than 80 infiltration trenches are constructed in AJ subcatchment, the low flow and the drought flow increases by around 47%, 44%, separately. The results of this study, infiltration trench is interpreted to be an effective infiltration facility to restore water-cycle in new town.

Effect of Stormwater Runoff on Combined Sewer Overflows in Korea

  • Kim, Lee-Hyung;Kim, Il-Kyu;Lee, Young-Sin;Lim, Kyeong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.107-113
    • /
    • 2007
  • The Kuem-River, one of the largest rivers in Korea, is the primary water source for more than 4 million people in Kongju city and surrounding area. To study the effect of stormwater runoff to CSOs, twelve monitoring sites were selected in two large cities (City of Kongju and City of Buyeo) near the Kuem-River. Monitoring was reformed by collecting grab samples, measuring flow rates during dry and wet seasons during over two rainy seasons. Generally the flow rate of wastewater in combined sewers was rapidly decreased after 23:00 P.M. and gradually increased from 06:30 A.M. in all sites during the dry season. The concentrations of pollutant increase approximately 5 to 7 fold for TSS and 1.5 to 2.5 fold for BOD during the rainy season. Monitoring and statistical analysis show that the groundwater contributes on sewage volume increase (average 25-45% more) during dry periods and the stormwater runoff contributes approximately 51-72% increase during rainy periods. Generally the concentrations of combined sewage were more polluted during the first flush period than after the first flush during a storm event.

Sensitivity analysis of effective imperviousness estimation for small urban watersheds (도시 소유역 유효불투수율의 민감도 분석)

  • Kim, Dae Geun;Ko, Young Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.181-187
    • /
    • 2009
  • In this study, a runoff hydrograph and runoff volume were calculated by using the kinetic wave theory for small urban watersheds based on the concept of low impact development(LID), and the effective imperviousness was estimated based on these calculations. The degree of sensitivity of the effective imperviousness of small watersheds to the impervious to pervious area ratio, infiltration capability, watershed slope, roughness coefficient and surface storage depth was then analyzed. From this analysis, the following conclusions were obtained: The effective imperviousness and paved area reduction factor decreased as the infiltration capability of pervious area increased. As the slope of watersheds becomes sharper, the effective imperviousness and the paved area reduction factor display an increasing trend. As the roughness coefficient of impervious areas increases, the effective imperviousness and the paved area reduction factor tend to increase. As the storage depth increases, the effective imperviousness and the paved area reduction factor show an upward trend, but the increase is minimal. Under the conditions of this study, it was found that the effective imperviousness is most sensitive to watershed slope, followed by infiltration capability and roughness coefficient, which affect the sensitivity of the effective imperviousness at a similar level, and the storage depth was found to have little influence on the effective imperviousness.

Development and Application of Diffusion Wave-based Distributed Runoff Model (확산파에 기초한 분포형 유출모형의 개발 및 적용)

  • Lee, Min-Ho;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.553-563
    • /
    • 2011
  • According to the improvement of computer's performance, the development of Geographic Information System (GIS), and the activation of offering information, a distributed model for analyzing runoff has been studied a lot in recently years. The distribution model is a theoretical and physical model computing runoff as making target basin subdivided parted. In the distributed model developed by this study, the volume of runoff at the surface flow is calculated on the basis of the parameter determined by landcover data and a two-dimensional diffusion wave equation. Most of existing runoff models compute velocity and discharge of flow by applying Manning-Strickler's mean velocity equation and Manning's roughness coefficient. Manning's roughness coefficient is not matched with dimension and ambiguous at computation; Nevertheless, it is widely used in because of its convenience for use. In order to improve those problems, this study developed the runoff model by applying not only Manning-Strickler's equation but also Chezy's mean velocity equation. Furthermore, this study introduced a power law of exponential friction factor expressed by the function of roughness height. The distributed model developed in this study is applied to 6 events of fan-shape basin, oblong shape test basin and Anseongcheon basin as real field conditions. As a result the model is found to be excellent in comparison with the exiting runoff models using for practical engineering application.

Water Quality and Particle Size Distributions of Bridge Road Runoff in Storm Event (강우시 교량도로 유출수 수질 및 입경분포)

  • Cho, Yong-Jin;Lee, Jun-Ho;Bang, Ki-Woong;Choi, Chang-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1353-1359
    • /
    • 2007
  • Water quality constituents, and particle size distributions were characterized in urban bridge road runoff, Bridge road runoff contains significant loads of micro-particles, heavy metals and organic constituents. Bridge road runoff was monitored on four sites of four and six lanes bridge road areas along with traffic volume. A total seven storm events were monitored to characterize the bridge road runoff. The quantity of road runoff and quality constituents, including chemical oxygen demand(COD), suspended solids(SS), total nitrogen(T-N), ortho-phosphorus$(PO_4-P)$, total phosphorus(T-P), and particle size distribution were analyzed. The results indicate that the concentrations of SS, COD, T-N and T-P ranges were $35\sim2,390$ mg/L, $40\sim1,274$ mg/L, $0.03\sim21.25$ mg/L, and $0.05\sim4.58$ mg/L, respectively. And the results showed that the mean range of particle size and $D_{90}$ for bridge road runoff were $4.75\sim14.05{\mu}m$ and $17.33\sim58.15{\mu}m$, respectively.