• Title/Summary/Keyword: Runoff storage

Search Result 281, Processing Time 0.031 seconds

Analyzing the Reduction of Runoff and Flood by Arrangements of Stormwater Storage Facilities (우수저류시설의 배치방법에 따른 유출 및 침수피해 저감효과 분석)

  • Park, Changyeol;Shin, Sang Young;Son, Eun Jung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.45-54
    • /
    • 2013
  • This study analyzes the reduction effects of runoff and flood damage through different arrangements of stormwater storage facilities. Three scenarios based on the spatial allocation of storage capacity are used: concentrated, decentralized and combinative. The characteristics of runoff and flood damage by scenario are compared. The XP-SWMM model is used for runoff simulation by the probable rainfall of return period. The result shows that the concentrated arrangement of storage facilities is most effective to reduce the amount of peak flow and to delay the time of peak flow. Yet, while the concentrated arrangement is most effective to reduce the inundation damage, it is not effective to reduce runoff volume. The decentralized arrangement is most effective to reduce runoff volume. The combinative arrangement is effective not only the runoff reduction but also the reduction of flood damage. The result indicates that the flood mitigation strategies against heavy rainfall need to consider decentralized on-site arrangement for the reduction of runoff volume along with concentrated off-site arrangement of storage facilities.

Effect of change in forest environment on water storage capacity in soil and streamflow (산림환경 변화가 토양내 수저유능력과 유출에 미치는 영향)

  • Nam, Yi;Park, Seung-Ki
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.35-51
    • /
    • 1997
  • To clarify the effect of forest environmental changes (forest type difference and clearcut) on water storage capacity in soil and stream flow, watershed had been investigated in Pyungchang, Kangwon-Do during 1983∼1993. Hydrological datas such as runoff, monthly ratio of runoff to precipitation, runoff-duration, monthly runoff(by plenty, ordinary, low and scanty duration), total runoff, direct runoff by runoff components, bulk density, porosity, coarse pore, fine pore, permeability and effective water storage were obtained from Backokpo and Yimokjong watersheds. The monthly ratio of runoff to precipitation, runoff and runoff-duration were higher in Yimokiong than in Backokpo due to forest type difference. On compararing pre-treatment with trement period in two experimental watersheds, pre-treatment period was lower than treatment period. Physical properties of soil such as bulk density, porosity, permeability, and effective water storage capacity conditions were better during the pre-trement period than treatment period in the two experiment plots.

  • PDF

Parameter Optimization of Long and Short Term Runoff Models Using Genetic Algorithm (유전자 알고리즘을 이용한 장·단기 유출모형의 매개변수 최적화)

  • Kim, Sun-Joo;Jee, Yong-Geun;Kim, Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.41-52
    • /
    • 2004
  • In this study, parameters of long and short term runoff model were optimized using genetic algorithm as a basic research for integrated water management in a watershed. In case of Korea where drought and flood occurr frequently, the integrated water management is necessary to minimize possible damage of drought and flood. Modified TANK model was optimized as a long term runoff model and storage-function model was optimized as a short term runoff model. Besides distinguished parameters were applied to modified TANK model for supplementing defect that the model estimates less runoff in the storm period. As a result of application, simulated long and short term runoff results showed 7% and 5% improvement compared with before optimized on the average. In case of modified TANK model using distinguished parameters, the simulated runoff after optimized showed more interrelationship than before optimized. Therefore, modified TANK model can be applied for the long term water balance as an integrated water management in a watershed. In case of storage-function model, simulated runoff in the storm period showed high interrelationship with observed one. These optimized models can be applied for the runoff analysis of watershed.

Application of Storage Function Method with SCS Method (SCS 초과우량산정방법을 이용한 저류함수법 적용)

  • Kim, Tae-Gyun;Yoon, Kang-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.523-532
    • /
    • 2007
  • It has been operated since 1974, recently, the flood forecasting and warning system is applied in almost all the rivers in Korea, and the Storage Function Method (SFM) is used for flood routing. The SFM which was presented by Toshimitsu Kimura (1961) routes floods in channels and basins with the storage function as the basic equation. A watershed is divided into two zone, runoff and percolation area and runoff from runoff area is occurred when cumulated rainfall is not exceed saturation point, but exceed runoff is occurred from percolation area, too. Runoff area is given and not changed, runoff ratio is constant. In routing Process, runoff from runoff and percolation area is routed seperately with nonlinear conceptual reservoir having the same characteristics and it is unreasonable assumption. A modified SFM is proposed with storage function and continuity equation which has no assumption for routing process and effective rainfall is calculated by SCS Method. For Wi-stream, comparison of Kimura and the modified SFM is conducted, and it could be seen that the modified SFM is more improvable and applicable method easily by reducing the parameters.

Application of two-term storage function method converted from kinematic wave method (운동파법의 변환에 의한 2항 저류함수법의 적용)

  • Kim, Chang Wan;Chegal, Sun Dong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1057-1066
    • /
    • 2019
  • The storage function method is used as a flood prediction model for four flood control offices in Korea as a method to analyze the actual rainfall-runoff relationship with non-linearity. It is essential to accurately estimate the parameters of the storage function method for accurate runoff analysis. However, the parameters of the storage function method currently in use are estimated by the empirical formula developed by the limited hydrological analysis in 2012; therefore, they are somewhat inaccurate. The kinematic wave method is a method based on physical variables of watershed and channel and is widely used for rainfall-runoff analysis. By adopting the two-term storage function method by the conversion of the kinematic wave method, parameters can be estimated based on physical variables, which can increase the accuracy of runoff calculation. In this research, the reproducibility of the kinematic wave method by the two-term storage function method was investigated. It is very easy to estimate the parameters because equivalent roughness, which is an important physical variable in watershed runoff, can be easily obtained by using land use and land cover, and the physical variable of channel runoff can be easily obtained from the basic river planning report or topographic map. In addition, this research examined the applicability of the two-term storage function method to runoff simulation of Naechon Stream, a tributary of the Hongcheon River in the Han River basin. As a result, it is considered that more accurate runoff calculation results could be obtained than the existing one-term storage function method. It is expected that the utilization of the storage function method can be increased because the parameters can be easily estimated using physical variables even in unmeasured watersheds and channels.

Development of the Sub-soil Storage System for Utilization Urban Instream Flow of Rainfall Runoff (우수유출수의 도시하천 유지유량 활용을 위한 지하저류시스템 개발)

  • Choi, Gye-Woon;Choi, Jong-Young;Kim, Suk-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.163-172
    • /
    • 2004
  • In this paper, the sub-soil storage system for utilizing urban instream flow of rainfall runoff was developed and examined through experiments. The artificial rainfall facility and sub-soil storage were installed in the experimental area. The effect of the water qualify improvement and the storage effect were analyzed through the several experiments. Through the experiments of rainfall intensity variation, which are the rainfall intensity of 20mm/hr, 30mm/hr, 40mm/hr, 50mm/hr was indicated SS concentration can be reduction until 68%. Also, the ration of the storage volume is varied from 42.8%∼79.9% based on the rainfall intensity. The reduction rate of the BOD, CO $D_{Mn}$, SS, T-N, T-P was 30%, 42%, 68%, 39%, 26%. As the result, water quality of runoff and efficient of runoff reduction by the system are much improved. The rainfall runoff with the installation of sub-soil storage could be used for instream flow.

Determination of the Storage Constant for the Clark Model by based on the Observed Rainfall-Runoff Data (강우-유출 자료에 의한 Clark 모형의 저류상수 결정)

  • Ahn, Tae-Jin;Choi, Kwang-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1454-1458
    • /
    • 2007
  • The determination of feasible design flood is the most important to control flood damage in river management. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by engineer's empirical sense. Storage constant in the Clark unit hydrograph method mainly affects magnitude of peak flood. This study is to estimate the storage constant based on the observed rainfall-runoff data at the three stage stations in the Imjin river basin and the three stage stations in the Ansung river basin. In this study four methods have been proposed to estimate the storage constant from observed rainfall-runoff data. The HEC-HMS model has been adopted to execute the sensitivity of storage constant. A criteria has been proposed to determine storage constant based on the results of the observed hydrograph and the HEC-HMS model.

  • PDF

Application of Storage Function Method with SCS Method (SCS 초과우량산정방법을 이용한 저류함수법 적용)

  • Kim, Tae-Gyun;Yoon, Kang-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.449-453
    • /
    • 2007
  • Has been being operated since 1974, recently, the flood forecasting and warning system is applied in almost all the rivers in Korea, and the Storage Function Method(SFM) is used for flood routing. The SFM which was presented by Toshimitsu Kimura(1961) routes floods in channels and basins with the storage function as the basic equation. A watershed is devided into two zone, runoff and percolation area and Runoff is occured when cumulated rainfall is not exceed saturation rainfall, but exceed, runoff is occured from percolation area, too. Runoff area is given and not changed, runoff ratio is constant. In routing process, runoff from runoff and percolation area is routed seperately with nonlinear cenceptual reservior having same characteristics and it is unreasonable assumption. Modified SFM is proposed with storage function and continuity Equation which has no assumption for routing process and effective rainfall is calculated by SCS Method. For Wi Stream, comparision of Kimura and Modified SFM is conducted and It could be seen that Modified SFM is more improvemental and easily applicable method.

  • PDF

Simulation of generable muddy water quantity and pollutant loads in sloping field using artificial rainfall simulator (실내인공강우기를 이용한 경사지 밭의 토양유실량과 오염부하 모의)

  • Shin, Min-Hwan;Choi, Yong-Hun;Seo, Ji-Yeon;Lee, Jae-Woon;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.986-990
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as most cause of muddy water problem among Non-point source(NPS) pollutant, was studied by the analysis of direct runoff flow, groundwater runoff, and groundwater storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared boxes which are 5%, 10%, and 20% sloped respectively. Also the direct runoff volume from straw covered surface boxes were much lower than bared surface boxes. It's deemed as that the infiltration capacity of straw covered surface boxes were increased, because the surface sealing by fine material of soil surface didn't occurred due to the straw covering. Under the same rainfall intensity and slope condition, 2.4 ${\sim}$ 8.2 times of sediment yield were occurred from bared surface boxes more than straw covered surface boxes. The volume of infiltrated were increased due to straw cover, the direct runoff flow were decreased with decreasing of tractive force in surface. To understand of relationship the rate of direct runoff flow, groundwater runoff, and groundwater storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, expect between the rate of groundwater storage and rainfall intensity.

  • PDF

Flood Runoff Analysis by a Storage Function Model (저류함수법에 의한 홍수유출해석)

  • 남궁달;김규성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.2
    • /
    • pp.75-86
    • /
    • 1996
  • The formulas for estimating the constants of storage function model including K and TL for runoff analysis and a distributed storage function model are discussed in this study. First, the relations between parameters of the storage function model and the kinematic runoff model are theoretically examined, and then optimum constants of storage function model are obtained by the Standardized Davidson-Fletcher-Powell (SDFP) method. Through this analysis, theoretical formulas were obtained as $K = 0.63 {\alpha} KsB{^0.6}$ and $T_{L}=0.11 {\alpha} KsB{^0.6} r{^0.4} {_e}$, which are difficult to use practically because of the unclarified definition of shape factors. From a practical point of view, empirical formula were derived as $K=15.6{^0.3} {_m}$ and $T_{L}=2.1B{^0.36} {_m} {_e}/r{^0.4} {_e}$ for applied watersheds. The proposed formulas are verified for several recoded floods at a few points of watersheds. It is also found that the distributed storage function. can be applied to flood runoff analysis using the new formulas aboved mentioned.

  • PDF