• Title/Summary/Keyword: Runoff of Nonpoint Pollutant

Search Result 139, Processing Time 0.025 seconds

Determination of Pollutant EMCs and Loadings of Runoff in Paved Areas (포장지역내 강우유출수의 EMCs 및 부하량 산정)

  • Gil, Kyung-Ik;Wee, Seung-Kyung;Park, Moo-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.119-122
    • /
    • 2008
  • The paved area like a road or bridge where having high impermeable rates were accumulated various non-point sources(NPS) by passing vehicles during dry season periods. They are flowed in the river continuous when it rains and could negative impact on environment. Therefore, this study monitoring NPS for two years and determinating for each pollutant EMCs and mass loading. The result shows that the EMC ranges are 11.60$\sim$230.90 mg/L for TSS, 4.58$\sim$31.90 mg/L for BOD, 1.86$\sim$9.20 mg/L for TN and 0.14$\sim$1.55 mg/L for TP. Also, the ranges of washed-off mass loading are determined to 0.78$\sim$18.01 kg/day for TSS, 0.47$\sim$1.17 kg/day for BOD, 0.00$\sim$0.01 kg/day for Pb and 0.01$\sim$0.06 kg/day for Zn.

Characteristics of Changes in Water Quality in the Suyoung River During Rainfall Event (강우 시 수영강 유역의 수질변화 특성)

  • Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • Recently, it was realized that a significant portion of pollution from urban areas originates from non-point sources such as construction sites, washoff from impervious surfaces, and sewage input from unsewered areas and combined sewer overflows. Especially, Urban stormwater runoff is one of the most extensive cause of the deterioration of the water quality in streams located in urban area. The objective of this study was to investigate runoff characteristics of non-point pollutants source at the urban area in the Suyeong River. Water quality variations were investigated at two points of Suyeong River during a period of 10 rainfall events. Concentration difference of non-point pollution source appeared big by precedent number of days of no rainfall. In addition, Event mean Concentration (EMCs) that well represents runoff characteristics of storm water during rainfall, was calculated, and runoff pollutants loading was also examined. The probability distribution of EMCs of BOD, COD, TOC, T-N, T-P, and TSS were analyzed and the mean values of observed EMC and the median values of estimated EMCs compared through probability distribution. Other objectives of this study were the characterization of discharge from non-point source, the analysis of the pollutant loads and an establishment of a management plan for non-point source of Suyeong River. Also, It was established that the most important thing for the administration of non-point pollution source is to come up with the solution for the reduction of effluent at the beginning.

Comparison of Pollutant Removal Efficiency in Road Sediment with Media Using Filter Separator (필터 분리기를 이용한 여재별 도로퇴적물의 오염물질 제거효율 비교)

  • Bang, Ki-Woong;Lee, Jun-Ho;Choi, Chang-Su;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.332-340
    • /
    • 2007
  • Storm runoff from road contains significant loads of particulate and dissolved solids, organic constituents and metal elements. Micro particle is important when considering pollution mitigation because pollutant metal and organics have similar behavior with particles. The objective of this research is to evaluate the hydrodynamic filter separator performance for road storm runoff treatment. A various types of media such as perlite, granular activated carbon, zeolite were used for column test packing media and filter separator, and to determine the removal efficiency with various surface loading rate. As the results of column test, the highest SS removal efficiency was using mixed media(granular activated carbon, zeolite and perlite), and granular activated carbon mixed with zeolite has higher heavy metal removal efficiency than perlite. In laboratory scale hydrodynamic filter separator study, the operation ranges of surface loading rates were from 192 to 1,469 $m^3/m^2/day$. The estimated overall removal efficiencies of hydrodynamic filter separator for typical storm runoff were SS 48.1%, BOD 31.9%, COD 32.6%, TN 15.5%, and TP 17.3%, respectively. For the case of heavy metals, overall removal efficiencies were Fe 26.0%, Cu 19.4%, Cr 25.7, Zn 16.6%, and Pb 15.0%, respectively. The most appropriate medium for hydrodynamic filter separator was perlite mixed with granular activated carbon to treatment of road storm runoff.

The Performance of Pollutant Removal Using Nonpoint Treatment Filtration Device and Analysis of the Filter Backwashing Effect (여과형 비점오염 처리장치의 오염물질 제거특성 및 역세척 분석)

  • Lee, Jun-ho;Yang, Seung-ho;Bang, Ki-woong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.523-532
    • /
    • 2015
  • Hydrocyclone is widely used in industry, for its simple design, high capacity, low maintenance and low operational cost. The objective of this study is to develop hydrocyclone coagulation and filtration system. The system is made of hydrocyclone ballasted coagulation with polyaluminium chloride silicate (PACS) and upflow filter to treat micro particles in urban storm runoff. Roadside sediment particles (< $200{\mu}m$) was mixed with tap water to make various turbid suspensions to simulate urban storm runoff. The filter cartridge was filled with polyethylene media system and ran 1hr per everyday and total operation time were 8.19hrs and backwashing everyday after end of operation. The operation condition of flowrate was $8.2{\sim}11.9m^3/day$ (mean $10.1m^3/day$) and surface overflow rate (SOR) based on filter surface area was $45.5{\sim}65.9m^3/m^2/day$ (mean $55.7m^3/m^2/day$). The range of PACS dosage concentration was 14.0~31.5 mg/L. As the results of operation, the range of removal efficiency of turbidity, SS were 81.0~95.8% (mean 89.5%) 81.8~99.0% (mean 91.4%), respectively. An increase of filtration basin retention time brought on increased of removal efficiency of turbidity and SS, and increase of SOR brought on decreased of removal efficiency. During the first flush in urban area, storm runoff have an high concentration of SS (200~600 mg/L) and the filtration bed becomes clogged and decreased of removal efficiency. Backwashing begins when the drainage pipe valve at the filtration tank bottom is completely open (backwashing stage 1). Backwashing stage 2 was using air bubbles and water jet washing the media for 5 mins and open the drainage valve. After backwashing stage 1, 2, 61.83~64.04%, 18.53~27.51% of SS loading was discharged from filtration tank, respectively. Discharged SS loading from effluent was 7.12~14.79% and the range of residual SS loading in fliter was 2.26~5.00%. The backwashing effects for turbidity, SS were 89.5%, 91.4%, respectively. The hydrocyclone coagulation and filtration with backwashing system, which came out to solve the problems of the costly exchange filter media, and low efficiency of removing micro particles of filter type nonpoint treatment devices, is considered as an alternative system.

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.

Runoff Characteristics and Relationship between Non-point Source Pollutants from Road (국도에서 발생하는 비점오염물질 유출특성 및 상관성)

  • Son, Hyun-Geun;Lee, So-Young;Lee, Eun-Ju;Kim, Lee-Hyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.59-64
    • /
    • 2008
  • The urban is possessing of various landuses such as commercial, industrial, residential and official areas. All of these landuses is including the paved areas that are roads and parking lots. The NPS (nonpoint sources) pollutants are generally originated from pavement areas in urban by human activities. Especially the roads are stormwater intensive landuses because of high vehicle activities and high imperviousness. The main NPS pollutants from roads are particulates and metals from vehicles and pavements. The Korea MOE (Ministry of Environment) is developing the NPS control program to reduce the NPS pollutants from the basins. However, it is not easy to control the NPS because it has high uncertainty by characteristics of rainfalls and watersheds. Therefore, this research was conducted on characterizing the runoff and providing mean EMC from roads. The monitoring were performed for total 16 rainfall events from a road in Youngin City since 2006. The results show that the TSS is highly correlated with other pollutant parameters. The statistical regression models using TSS EMC have been developed to easily determine the EMC of other pollutant parameters.

Assessing the Action Plans in the Control Area(Soyang Reservoir) of Non-point Source Pollution (비점오염원 관리지역(소양호) 목표수질 달성도 평가)

  • Choi, Jaewan;Kang, Min-Ji;Ryu, Jichul;Kim, Dong-Il;Lim, Kyung-Jae;Shin, Dong-Seok
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.839-852
    • /
    • 2014
  • The Ministry of Environment (MOE) has made more effort in managing point source pollution rather than in nonpoint source pollution in order to improve water quality of the four major rivers. However, it would be difficult to meet water quality targets solely by managing the point source pollution. As a result of the comprehensive measures established in 2004 under the leadership of the Prime Minister's Office, a variety of policies such as the designation of control areas to manage nonpoint source pollution are now in place. Various action plans to manage nonpoint source pollution have been implemented in the Soyang-dam watershed as one of the control areas designed in 2007. However, there are no tools to comprehensively assess the effectiveness of the action plans. Therefore, this study would assess the action plans (especially, BMPs) designed to manage Soyang-dam watershed with the WinHSPF and the CE-QUAL-W2. To this end, we simulated the rainfall-runoff and the water quality (SS) of the watershed and the reservoir after conducting model calibration and the model validation. As the results of the calibration for the WinHSPF, the determination coefficient ($R^2$) for the flow (Q, $m^3/s$) was 0.87 and the $R^2$ for the SS was 0.78. As the results of the validation, the former was 0.78 and the latter was 0.67. The results seem to be acceptable. Similarly, the calibration results of the CE-QUAL-W2 showed that the RMSE for the water level was 1.08 and the RMSE for the SS was 1.11. The validation results(RMSE) of the water level was 1.86 and the SS was 1.86. Based on the daily simulation results, the water quality target (turbidity 50 NTU) was not exceeded for 2009~2011, as results of maximum turbidity in '09, '10, and '11 were 3.1, 2.5, 5.6 NTU, respectively. The maximum turbidity in the years with the maximum, the minimum, and the average of yearly precipitation (1982~2011) were 15.5, 7.8, and 9.0, respectively, and therefore the water quality target was satisfied. It was discharged high turbidity at Inbuk, Gaa, Naerin, Gwidun, Woogak, Jeongja watershed resulting of the maximum turbidity by sub-basins in 3years(2009~2011). The results indicated that the water quality target for the nonpoint source pollution management should be changed and management area should be adjusted and reduced.

Characteristics of Water Quality by Storm Runoffs from Intensive Highland Agriculture Area in the Upstream of Han River Basin (한강상류 고령지 농업지역에서의 강우시 비점오염 유출 특성)

  • Jung, Sungmin;Jang, Changwon;Kim, Jai-Ku;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.102-111
    • /
    • 2009
  • Turbid storm runoff from intensive highland agriculture area has emerged as the major problem of water quality deterioration in the upstream region of the Han River. High slope of the upland combined with high rate of fertilization and intensive plowing causes high rate of soil erosion, and subsequently high suspended sediment and phosphorus content in the runoff water. The variations of water quality during rain spells were surveyed for two years (2005 and 2006) in the Jawoon Stream that is one of hot spots of intensive horticulture discharging turbid storm runoff. SS and TP showed large increase according to the increase of flow rate, whereas TN and BOD showed less fluctuations. Mean EMCs of SS and TP measured for nine rain events were as high as $207mgSS{\cdot}L^{-1}$ and $0.27mgP{\cdot}L^{-1}$, respectively. The export coefficient of SS and TP per area of cultivated field were calculated as $11,912kgSS{\cdot}yr^{-1}{\cdot}km^{-2}$ and $785kgP{\cdot}yr^{-1}{\cdot}km^{-2}$, repectively, which are significantly higher than reports of other area. It can be concluded that SS and TP in the runoffs were high enough to impose major threat to aquatic habitats, and the highland agriculture should be the main target of water quality management or habitat conservation in the study area.

Pollutant Loading Estimate from Yongdam Watershed Using BASINS/HSPF (BASINS/HSPF를 이용한 용담댐 유역의 오염부하량 산정)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Jeon, Ji-Hong;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.187-197
    • /
    • 2006
  • A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency(EPA) was applied to the Yongdam Watershed to examine its applicability for loading estimates in watershed scale. It was run under BASINS (Better Assessment Science for Integrating point and Nonpoint Sources) program, and the model was validated using monitoring data of 2002 ${\sim}$ 2003. The model efficiency of runoff was high in comparison between simulated and observed data, while it was relatively low in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources and land uses intermixed in the watershed. The estimated pollutant load from Yongdam watershed for BOD, T-N and T-P was 1,290,804 kg $yr{-1}$, 3,753,750 kg $yr{-1}$ and 77,404 kg $yr{-1}$,respectively. Non-point source (NPS) contribution was high showing BOD 57.2%, T-N 92.0% and T-P 60.2% of the total annual loading in the study area. The NPS loading during the monsoon rainy season (June to September) was about 55 ${\sim}$ 72% of total NPS loading, and runoff volume was also in a similar rate (69%). However, water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. Overall, the BASINS/HSPF was applied to the Yongdam watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading in watershed scale.

Characteristics of heavy metal concentrations in urban stormwater runoff, Daejeon, Korea (도시 유역 강우유출수 내 중금속 농도의 변화 특성에 관한 연구)

  • Yu, Eunjin;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.917-927
    • /
    • 2018
  • Seven heavy metal concentrations (As, Cd, Cr, Cu, Ni, Pb, Zn) were continuously analyzed for twenty rainfall events in 2017~2018 in an urban basin. The overall and dynamic correlations between runoff characteristics and heavy metal concentrations were examined. The peak metal concentration generally appeared in the initial runoff but found to be delayed when the rainfall intensity was low. The rainfall duration had no relationship with either heavy metal concentrations or their total mass. Dynamics of heavy metal mass (load), with the exception of Cu and Zn, showed strong correlation with the 30 minute rainfall intensity (0.60~0.88) and runoff volume (0.74~0.89). While event mean concentration (EMC) showed positive correlation (0.54~0.73) with antecedent dry days (ADD), no significant relationship was found between runoff volume and pollutant concentration. This implies that the pollutants built up on the surface during dry days are washed off even with low rainfall energy. The dynamics of heavy metal and TSS concentrations showed good correlation (0.68~0.87). This result shows that the metals are transported along with solid particles as adsorbate in surface runoff. Regular street sweeping will reduce significant amount of heavy metal loads in urban surface runoff.