• 제목/요약/키워드: Runoff model

검색결과 1,666건 처리시간 0.032초

농촌유역의 강우-유출분석 (Rainfall-Runoff Analysis of a Rural Watershed)

  • 김지용;박기중;정상옥
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.93-98
    • /
    • 2001
  • This study was performed to analyse the rainfall and the rainfall-runoff characteristics of a rural watershed. The Sangwha basin($105.9km^{2}$) in the Geum river system was selected for this study. The arithmetic mean method, the Thiessen's weighing method, and the isohyetal method were used to analyse areal rainfall distribution and the Huff's quartile method was used to analyse temporal rainfall distribution. In addition, daily runoff analyses were peformed using the DAWAST and tank model. In the model calibration, the data from June through November, 1999 were used. In the model calibration, the observed runoff depth was 513.7mm and runoff rate was 45.2%, and the DAWAST model simulated runoff depth was 608.6mm and runoff rate was 53.5%, and the tank model runoff depth was 596.5mm and runoff rate was 52.5%, respectively. In the model test, the data from June through November, 2000 were used. In the model test, the observed runoff depth was 1032.3mm and runoff rate was 72.5%, and the DAWAST model simulated runoff depth was 871.6mm and runoff rate was 61.3%, and the tank model runoff depth was 825.4mm and runoff rate was 58%, respectively. The DAWAST and tank model's $R^{2}$ and RMSE were 0.85, 3.61mm, and 0.85, 2.77mm in 1999, and 0.83, 5.73mm, and 0.87, 5.39mm in 2000, respectively. Both models predicted low flow runoff better than flood runoff.

  • PDF

유전자 알고리즘을 적용한 혼합유출모형의 개발 (Development of Combination Runoff Model Applied by Genetic Algorithm)

  • 심석구;구보영;안태진
    • 한국수자원학회논문집
    • /
    • 제42권3호
    • /
    • pp.201-212
    • /
    • 2009
  • 탱크모형과 PRMS(Precipitation Runoff Modeling-modular System) 모형으로 섬진강댐 유역의 유출량을 1981년부터 2001년까지 모의 발생하였다. 적용된 각각의 단일모형인 Tank 모형과 PRMS 모형에 의하여 모의된 유출량은 서로 상이한 모의 양상을 나타낸다. 본 연구에서는 Tank 모형과 PRMS 모형과 같은 단일모형에 의하여 모의되는 유출량의 편차를 최소화하고 관측유출량에 보다 잘 부합되는 유출모의결과를 생산하기 위하여 유전자 알고리즘 혼합유출모형을 제안하였다. 제안된 혼합유출모형은 Tank 모형과 PRMS 모형의 각각 결과를 혼합하는 모형이며, 유전자 알고리즘을 적용하여 모의 유출량과 관측 유출량을 최소화하는 Tank 모형과 PRMS 모형에 의한 각각의 유출량의 비율을 결정하는 최적배합비를 산정하였다. 제안된 혼합 모형을 섬진강댐 유역에 적용한 결과, Tank 모형 또는 PRMS 모형과 같은 단일모형으로 유출량을 모의하는 경우보다 두 개의 모형을 적절한 배합비를 도입한 혼합 모형으로 모의된 유출량은 관측유출량과의 각종오차를 작게 하는 것을 보여 주었다.

유역 유출량 추정을 위한 TANK 모형의 매개변수 최적화에 따른 적용성 평가 (Evaluation of the Tank Model Optimized Parameter for Watershed Modeling)

  • 김계웅;송정헌;안지현;박지훈;전상민;송인홍;강문성
    • 한국농공학회논문집
    • /
    • 제56권4호
    • /
    • pp.9-19
    • /
    • 2014
  • The objective of this study was to evaluate of the Tank model in simulating runoff discharge from rural watershed in comparison to the SWAT (Soil and Water Assessment Tool) model. The model parameters of SWAT was calibrated by the shuffled complex evolution-university Arizona (SCE-UA) method while Tank model was calibrated by genetic algorithm (GA) and validated. Four dam watersheds were selected as the study areas. Hydrological data of the Water Management Information System (WAMIS) and geological data were used as an input data for the model simulation. Runoff data were used for the model calibration and validation. The determination coefficient ($R^2$), root mean square error (RMSE), Nash-Sutcliffe efficiency index (NSE) were used to evaluate the model performances. The result indicated that both SWAT model and Tank model simulated runoff reasonably during calibration and validation period. For annual runoff, the Tank model tended to overestimate, especially for small runoff (< 0.2 mm) whereas SWAT model underestimate runoff as compared to observed data. The statistics indicated that the Tank model simulated runoff more accurately than the SWAT model. Therefore the Tank model could be a good tool for runoff simulation considering its ease of use.

지형공간 특성자료를 이용한 하천유역의 강우-유출해석 (Rainfall-Runoff Analysis of River Basin Using Spatial Data)

  • 안승섭;이증석;도준현
    • 한국환경과학회지
    • /
    • 제12권9호
    • /
    • pp.949-955
    • /
    • 2003
  • The subject basin of the research was the basin of Yeongcheon Dam located in the upper reaches of the Kumho River. The parameters of the model were derived from the results of abstracting topological properties out of rainfall-runoff observation data about heavy rains and Digital Elevation Modeling(DEM) materials. This research aimed at suggesting the applicability of the CELLMOD Model, a distribution-type model, in interpreting runoff based on the topological properties of a river basin, by carrying out runoff interpretation far heavy rains using the model. To examine the applicability of the model, the calculated peaking characteristics in the hydrograph was analyzed in comparison with observed values and interpretation results by the Clark Model. According to the result of analysis using the CELLMOD Model proposed in the present research for interpreting the rainfall-runoff process, the model reduced the physical uncertainty in the rainfall-runoff process, and consequently, generated improved results in forecasting river runoff. Therefore it was concluded that the algorithm is appropriate for interpreting rainfall-runoff in river basins. However, to enhance accuracy in interpreting rainfall-runoff it is necessary to supplement heavy rain patterns in subject basins and to subdivide a basin into minor basins for analysis. In addition, it is necessary to apply the model to basins that have sufficient observation data, and to identify the correlation between model parameters and the basin characteristics(channel characteristics).

Application of a Distribution Rainfall-Runoff Model on the Nakdong River Basin

  • 김광섭;순밍동
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.976-976
    • /
    • 2012
  • The applicability of a distributed rainfall-runoff model for large river basin flood forecasts is analyzed by applying the model to the Nakdong River basin. The spatially explicit hydrologic model was constructed and calibrated by the several storm events. The assimilation of the large scale Nakdong River basin were conducted by calibrating the sub-basin channel outflow, dam discharge in the basin rainfall-runoff model. The applicability of automatic and semi-automatic calibration methods was analyzed for real time calibrations. Further an ensemble distributed rainfall runoff model has been developed to measure the runoff hydrograph generated for any temporally-spatially varied rainfall events, also the runoff of basin can be forecast at any location as well. The results of distributed rainfall-runoff model are very useful for flood managements on the large scale basins. That offer facile, realistic management method for the avoiding the potential flooding impacts and provide a reference for the construct and developing of flood control facilities.

  • PDF

유역 유출 예측 시스템 개발 (Development of Rainfall-Runoff forecasting System)

  • 황만하;맹승진;고익환;류소라
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.709-712
    • /
    • 2004
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. h short-term water demand forecasting technology will be developed fatting into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF

유전자 알고리즘을 이용한 장·단기 유출모형의 매개변수 최적화 (Parameter Optimization of Long and Short Term Runoff Models Using Genetic Algorithm)

  • 김선주;지용근;김필식
    • 한국농공학회논문집
    • /
    • 제46권5호
    • /
    • pp.41-52
    • /
    • 2004
  • In this study, parameters of long and short term runoff model were optimized using genetic algorithm as a basic research for integrated water management in a watershed. In case of Korea where drought and flood occurr frequently, the integrated water management is necessary to minimize possible damage of drought and flood. Modified TANK model was optimized as a long term runoff model and storage-function model was optimized as a short term runoff model. Besides distinguished parameters were applied to modified TANK model for supplementing defect that the model estimates less runoff in the storm period. As a result of application, simulated long and short term runoff results showed 7% and 5% improvement compared with before optimized on the average. In case of modified TANK model using distinguished parameters, the simulated runoff after optimized showed more interrelationship than before optimized. Therefore, modified TANK model can be applied for the long term water balance as an integrated water management in a watershed. In case of storage-function model, simulated runoff in the storm period showed high interrelationship with observed one. These optimized models can be applied for the runoff analysis of watershed.

신경회로망을 이용한 Web기반 홍수유출 예측시스템 (Web-Based Forecasting System for Flood Runoff with Neural Network)

  • 황동국;전계원
    • 한국지능시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.437-442
    • /
    • 2005
  • 하천에서의 홍수유출 예측은 하천의 치수적인 측면에서도 중요하다. 본 논문에서는 신경회로망 모형을 이용해서 개발된 홍수유출 예측 시스템의 적용성을 검토하였다. 입력층에는 강우자료와 홍수량 자료를 출력층에는 홍수유출량이 예측되도록 구성하였다. 홍수유출 예측 시스템 구성시 예측모형 선정을 위해 신경회로망 모형과 상태공간 모형을 이용하여 홍수시 실시간 하천유출량 예측을 수행하였다. 두 모형의 예측결과 비교시 신경회로망 모형이 실시간 홍수량 예측에 적합한 모형으로 선정되었다. 신경회로망 모형은 Web 상에서 사용이 가능하게 변환하여 홍수유출 예측시스템의 기본모형으로 개발하였다.

수자원의 이용계획을 위한 장기유출모형의 개발에 관한 연구 (A Study on Development of Long-Term Runoff Model for Water Resources Planning and Management)

  • 조현경
    • 한국산업융합학회 논문집
    • /
    • 제16권3호
    • /
    • pp.61-68
    • /
    • 2013
  • Long-term runoff model can be used to establish the effective plan of water reources allocation and the determination of the storage capacity of reservoir. So this study aims at the development of monthly runoff model using artificial neural network technique. For this, it was selected multi-layer neural network(MLN) and radial basis function neural network(RFN) model. In this study, it was applied model to analysis monthly runoff process at the Wi stream basin in Nakdong river which is representative experimental river basin of IHP. For this, multi-layer neural network model tried to construct input 3, hidden 7, and output 1 for each number of layer. As the result of analysis of monthly runoff process using models connected with artificial neural network technique, it showed that these models were effective in the simulation of monthly runoff.

Fuzzy추론 시스템과 신경회로망을 결합한 하천유출량 예측 (Runoff Forecasting Model by the Combination of Fuzzy Inference System and Neural Network)

  • 허창환;임기석
    • 한국농공학회논문집
    • /
    • 제49권3호
    • /
    • pp.21-31
    • /
    • 2007
  • This study is aimed at the development of a runoff forecasting model by using the Fuzzy inference system and Neural Network model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting. The Neuro-Fuzzy (NF) model were used in this study. The NF model, recently received a great deal of attention, improve the existing Neural Networks by the aid of the Fuzzy theory applied to each node. The study area is the downstreams of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model respectively. The schematic diagram method and the statistical analysis are conducted to evaluate the feasibility of rainfall-runoff modeling. The model accuracy was rapidly decreased as the forecasting time became longer. The NF model can give accurate runoff forecasts up to 4 hours ahead in standard above the Determination coefficient $(R^2)$ 0.7. In the comparison of the runoff forecasting using the NF and TANK models, characteristics of peak runoff in the TANK model was higher than ones in the NF models, but peak values of hydrograph in the NF models were similar.