• Title/Summary/Keyword: Runoff load

Search Result 288, Processing Time 0.029 seconds

Flow Weighted Mean Concentration and Runoff -Mass Load Relationship of Pollutants Derived from Intensively Sampled Water Quality Data of a Paddy Field (논에서의 일주기 수질 조사로부터 유도된 오염물질의 강우 -유출 사상별 유량가중평균농도와 유출량- 유하부하량 관계)

  • 윤광식;최진용;한국헌;조재영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.127-135
    • /
    • 2002
  • Water quality samples were taken for every two hours whenever runoff occurred by rainfall to investigate concentration variations of T-N, T-P and SS during runoff process from a paddy field. The difference between the highest concentration in a runoff event and flow weighted mean concentration for T-N, T-P, SS placed between 3.07∼40.16%, 11.44∼60.80%, and 15.11∼64.5%, respectively. The difference between the lowest concentration in event and event mean concentration for T-N, T-P, SS ranged between -7.24∼-31.84%, -11.59∼-47.86%, and -5.21∼-36.20%, respectively. The relationship between runoff and mass load was derived for each storm event using observed data. The relationship between runoff and mass load showed linear relationship regardless of water quality constituents and rainfall amount. The results suggested that relationship between T-N and T-P loads and runoff should be prepared separately in considering of fertilization effect and seasonal conditions. The relationship between SS and runoff should be made to reflect seasonal conditions and tillage effect.

Characteristics of Runoff ratio and Pollutant Loading in Rural Watersheds (농촌유역에서의 유달부하량 및 유달율의 특성)

  • 양영민;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.533-540
    • /
    • 1998
  • In this study, to propose the methods predicting water qualities in rural areas, the methods which were based on the runoff ratio, the relationships between the pollutant load(L) and the water runoff(Q), and the relationships between the runoff ratio and the water runoff in Bokha stream watersheds were examined. As a result, we had acquired reliable the values of runoff ratio and the reasonable equations between the pollutant load(L) and the water runoff(Q) in Bokha stream watersheds. And it was noticed that the runoff ratio had tendency of varying directly proportional to the water runoff.

  • PDF

A Study on the Analysis of Non-point Source Runoff Characteristics and Verification of Unit Pollutant Load Considering Baseflow Runoff (기저유출을 고려한 비점오염 유출특성 분석과 원단위 검증에 관한 연구)

  • Park, Jaebeom;Kal, Byungseok;Lee, Chulgu;Hong, Seonhaw;Choi, Moojin
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • In this study, the characteristics of non-point source pollution runoff and the possibility of using new unit load were investigated by using pollutant load based on monitoring data considering baseflow. For this purpose, the components of hydrograph were separated by using digital filter method and the numerical integration method was applied to calculate the non-point source pollutant load for nine rainfall events in Juwon river in the Geum River basin. As a result of this study, the mean contribution rate of non-point pollutant was 31.34% for BOD, 58.94% for T-N, and 50.42% for T-P and BOD was more influenced by baseflow pollutant. Also, it was analyzed the pollutant load using the new unit load is closer to the observation load than the old unit load. This result implies that it is necessary to manage not only pollutant load due to direct runoff but also pollutant load due to baseflow runoff for efficient water quality management of the watershed.

Development of Ridge Regression Model of Pollutant Load Using Runoff Weighted Value Based on Distributed Curve-Number (분포형 CN 기반 토지피복별 유출가중치를 이용한 오염부하량 능형회귀모형 개발)

  • Song, Chul Min;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.111-120
    • /
    • 2018
  • The purpose of this study was to develop a ridge regression (RR) model to estimate BOD and TP load using runoff weighted value. The concept of runoff weighted value, based on distributed curve-number (CN), was introduced to reflect the impact of land covers on runoff. The estimated runoff depths by distributed CN were closer to the observed values than those by area weighted mean CN. The RR is a technique used when the data suffers from multicollinearity. The RR model was developed for five flow duration intervals with the independent variables of daily runoff discharge of seven land covers and dependent variables of daily pollutant load. The RR model was applied to Heuk river watershed, a subwatershed of the Han river watershed. The variance inflation factors of the RR model decreased to the value less than 10. The RR model showed a good performance with Nash-Sutcliffe efficiency (NSE) of 0.73 and 0.87, and Pearson correlation coefficient of 0.88 and 0.93 for BOD and TP, respectively. The results suggest that the methods used in the study can be applied to estimate pollutant load of different land cover watersheds using limited data.

Correlation Analysis on the Runoff Pollutants from a Small Plot Unit in an Agricultural Area

  • Kang, Meea;Choi, Byoung-Woo;Lee, Jae-Kwan
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.191-195
    • /
    • 2010
  • This study was carried out to investigate the important factors relating to runoff and pollutant loads in a plot unit located in an agricultural area. Of the precipitation parameters, such as total precipitation, days since last rainfall (ADD, the rainfall was more than 10mm) and average rainfall intensity on runoff, the strongest effect was obtained due to total precipitation, but the rainfall intensity showed a slightly positive correlation. It was expected that both variables, i.e. total precipitation and rainfall intensity, would lead to the generation of greater runoff. In contrast, runoff was negatively correlated with ADD, which is understandable because more infiltration and less runoff would be expected after a long dry period. The TSS load varied greatly, between 75.6 and $5.18{\times}10^4g$, per event. With the exception of TN, the TSS, BOD, COD and TP loads were affected by runoff. The correlations of these items were proportional to the runoff volume, with correlation coefficients (r) greater than 0.70, which are suitable for use as NPS model data. The TSS load showed very good relationships with organics (BOD & COD) and nutrients (TN & TP), with correlation coefficients greater than 0.79. Therefore, the removal of TSS is a promising factor for protecting water basins.

A Study on the Estimation Methods of Nonpoint Pollutant Unit Load - Focus on Nonpoint Pollutant Unit Load in Paddy Field - (비점오염 발생 원단위 산정방법에 대한 고찰 - 논 비점오염 원단위를 중심으로 -)

  • Choi, DongHo;Choi, Soon-Kun;Kim, Min-Kyeong;Hur, Seung-Oh;Hong, Sung Chang;Yeob, So-Jin;Yoon, KwangSik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In order to preserve water environment, Total Maximum Daily Load(TMDL) is used to manage the total amount of pollutant from various sources, and the annual average load of source is calculated by the unit load method. Determination of the unit load requires reliable data accumulation and analysis based on a reasonable estimation method. In this study, we propose a revised unit load estimation method by analyzing the unit load calculation procedure of National Institute of Environment Research(NIER) method. Both methods were tested using observed runoff ratio and water quality data of rice paddy fields. The estimated values with the respective NIER and revised NIER methods were highly correlated each other. However, the Event Mean Concentration(EMC) and the runoff ratio considered in the NIER method appeared to be influenced by rainfall classes, and the difference in unit load increases as the runoff and EMC increase. The error can be further increased when the EMC and runoff ratio are changed according to changes in rainfall patterns by climate change and change of agricultural activities. Therefore, it is recommended to calculate unit load by applying the revised NIER method reflecting the non point pollution runoff characteristics for different rainfall classes.

Development of Nonpoint Sources Runoff Load Estimation Model Equations for the Vineyard Area (포도밭에 대한 비점오염물질 유출량 추정 모델식 개발)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Yi, Youn-Jung;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.907-915
    • /
    • 2010
  • Agriculture nonpoint pollution source is a significant contributor to water quality degradation. To establish effective water quality control policy, environpolitics establishment person must be able to estimate nonpoint source loads to lakes and streams. To meet this need for orchard area, we investigated a real rainfall runoff phenomena about it. We developed nonpoint source runoff estimation models for vineyard area that has lots of fertilizer, compost specially between agricultural areas. Data used in nonpoint source estimation model gained from real measuring runoff loads and it surveyed for two years(2008-2009 year) about vineyard. Nonpoint source runoff loads estimation models were composed of using independent variables(rainfall, storm duration time(SDT), antecedent dry weather period(ADWP), total runoff depth(TRD), average storm intensity(ASI), average runoff intensity(ARI)). Rainfall, total runoff depth and average runoff intensity among six independent variables were specially high related to nonpoint source runoff loads such as BOD, COD, TN, TP, TOC and SS. The best regression model to predict nonpoint source runoff load was Model 6 and regression factor of all water quality items except for was $R^2=0.85$.

Analysis of NPS Pollution Loads over Rainfall-Runoff Events from the Silica Mine Site (규사광산 지역의 강우시 비점오염원의 유출분석)

  • Choi, Yong-hun;Won, Chul-hee;Seo, Ji-yeon;Shin, Min-Hwan;Yang, Hee-Jeong;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.413-419
    • /
    • 2010
  • A silica mine monitoring was conducted from March to December in 2008 to measure rainfall, runoff amounts and pollution loads. A total of 13 rainfall-runoff events were measured and analyzed with respect to runoff ratio, pollutant concentration and load, and initial flush. Over rainfall-runoff events, 95% confidence range of SS concentration was 942.5~2,056.2 mg/L. Other measured water quality indices also showed relatively large variation. This wide concentration variation was thought to be caused by the bare working ground of the mine that was used to store, process and transport the mined silica. Total pollution load of the 13 rainfall-runoff events was SS 17,901 kg/ha, $COD_{Cr}$ 160.9 kg/ha, $COD_{Mn}$ 111.24 kg/ha, BOD 79.6 kg/ha, T-N 13.8 kg/ha, T-P 3.5 kg/ha, and TOC 39.3 kg/ha. Initial flush was not well observed except SS. Very high SS concentration and load was occurred when rainfall was large. Therefore, it was recommended to manage the bare ground not to discharge excessive pollutants during wet days by covering the ground or constructing runoff treatment systems such as a sediment basin.

Evaluation of Runoff and Pollutant Loads using L-THIA 2012 Runoff and Pollutant Auto-calibration Module and Ranking of Pollutant Loads Potential (L-THIA 2012 유출 및 수질 자동 보정 모듈을 이용한 유출/비점부하량 산정 및 비점오염 부하량 포텐셜 등급화)

  • Jang, Chunhwa;Kum, Donghyuk;Ha, Junsoo;Kim, Kyoung-Soon;Kang, Dong Han;Kim, Keuk-Tai;Shin, Dong Suk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.184-195
    • /
    • 2013
  • Urbanization from agricultural/forest areas has been causing increased runoff and pollutant loads from it. Thus, numerous models have been developed to estimate NPS loading from urban area and Long-Term Hydrologic Impact Analysis (L-THIA) model has been used to evaluate effects of landuse changes on runoff and pollutant loads. However, the L-THIA model could not consider rainfall intensity in runoff evaluation. Therefore, the L-THIA model, capable of simulating runoff using 10-minute rainfall data, was applied to the study areas for evaluation of estimated runoff and NPS. The estimated Nash-Sutcliffe coefficient (NSE) values were over 0.6 for runoff, BOD, TN, and TP for most sites and watershed. The calibrated model was further extended to other counties for pollutant load potential evaluation. Pollutant load potential maps were developed and target areas were identified. As shown in this study, the L-THIA 2012 can be used for evaluation runoff and pollutant loads with limited data sets and its estimation could be used in identifying pollutant load hot spot areas for implementation of site-specific Best Management Practices.

Analysis of Unit Pollution Load on Highway runoff (고속도로 노면 강우유출 오염부하 원단위 산정)

  • Kang, Hee-Man;Lee, Doo-Jin;Bae, Woo-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.55-68
    • /
    • 2012
  • Impervious surface increase due to urbanization, one of the leading causes of pavement increased the runoff coefficient, peak flow, and reducing the infiltration flow and thereby causing flooding and river erosion is occurring in aquatic ecosystems are known to impair. This study aimed to classify use type of detailed land into the road, reststop, tollgates and etc. focused on major domestic highways, to understand the characteristics of rainfall runoff pollutants and to calculate applicable unit pollution load. Because of high runoff coefficient and short travel time to drainage. first flush occurred clearly. Average EMCs of runoff in the highway was investigated as TSS 108.47 mg / L, COD 28.16 mg / L, BOD 13.61 mg / L, TN 6.38 mg / L, TP 0.03 mg / L, Cu 118.17 ${\mu}g$ / L, Pb 345.3 ${\mu}g$ / L, Zn 349.47 ${\mu}g$ / L. Unit pollution loads calculated by detailed land use area of highways based on average annual rainfall, EMCs, applicable basin areas and etc. were 46.6 kg/km2/day of BOD, 1.4 kg/km2/day of TP, 8.81 kg / km2/day of TN and these were BOD 50.8%, TP 66.7%, TN 64.4%in comparison of the unit pollution loads which applies fallow land standards of the TMDL(Total Maximum Daily Load). It was considered that discharged loads can be excessively calculated in case highway non-point management plans based on unit pollution load of the current land standard.