• 제목/요약/키워드: Runoff flow

Search Result 874, Processing Time 0.029 seconds

Study on the Runoff Characteristics of Non-point Source Pollution in Municipal Area Using SWMM Model -A Case Study in Jeonju City (SWMM모델을 이용한 도시지역 비점오염원의 유출특성 연구 -전주시를 대상으로)

  • Paik Do-Hyson;Lim Young-Hwan;Choi Jin-Kyu;Jung Paul-Gene;Kwak Dong-Heui
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1185-1194
    • /
    • 2005
  • The runoff characteristics of non-point source pollutions in the municipal area of Jeonju were investigated and analyzed by using the SWMM (Storm Water Management Model). The flow rates and water qualities of runoff from two types of drainage conduits were measured respectively. One was a conventional combined sewer system and the other was a separated sewer system constructed recently From August to November in 2004, investigations on two rainfall events were performed and flow rate, pH, BOD, COD, SS, T-N and T-P were measured. These data were also used for model calibration. On the basis of the measured data and the simulation results by SWMM, it is reported that $80-90\%$ of pollution load is discharged in the early-stage storm runoff. Therefore, initial 10-30 mm of rainfall should be controlled effectively for the optimal treatment of non-point source pollution in urban area. Also, it was shown that the SWMM model was suitable for the management of non-point source pollution in the urban area and for the analysis of runoff characteristics of pollutant loads.

Analysis of Unit Pollution Load on Highway runoff (고속도로 노면 강우유출 오염부하 원단위 산정)

  • Kang, Hee-Man;Lee, Doo-Jin;Bae, Woo-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.55-68
    • /
    • 2012
  • Impervious surface increase due to urbanization, one of the leading causes of pavement increased the runoff coefficient, peak flow, and reducing the infiltration flow and thereby causing flooding and river erosion is occurring in aquatic ecosystems are known to impair. This study aimed to classify use type of detailed land into the road, reststop, tollgates and etc. focused on major domestic highways, to understand the characteristics of rainfall runoff pollutants and to calculate applicable unit pollution load. Because of high runoff coefficient and short travel time to drainage. first flush occurred clearly. Average EMCs of runoff in the highway was investigated as TSS 108.47 mg / L, COD 28.16 mg / L, BOD 13.61 mg / L, TN 6.38 mg / L, TP 0.03 mg / L, Cu 118.17 ${\mu}g$ / L, Pb 345.3 ${\mu}g$ / L, Zn 349.47 ${\mu}g$ / L. Unit pollution loads calculated by detailed land use area of highways based on average annual rainfall, EMCs, applicable basin areas and etc. were 46.6 kg/km2/day of BOD, 1.4 kg/km2/day of TP, 8.81 kg / km2/day of TN and these were BOD 50.8%, TP 66.7%, TN 64.4%in comparison of the unit pollution loads which applies fallow land standards of the TMDL(Total Maximum Daily Load). It was considered that discharged loads can be excessively calculated in case highway non-point management plans based on unit pollution load of the current land standard.

Flood Runoff Analysis using a Distributed Rainfall Runoff Model (분포형 유출모형을 이용한 홍수유출해석)

  • Jo, Hong-Je;Jo, In-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.199-208
    • /
    • 1998
  • This study is on the application of TOPMDEL(Topographic based hydrologic model) Which is a distributed rainfall-runoff model to the flood runoff analysis. The test area was Wichun experimental catchment site which is mountainous mid-area (Dongok, 33.63$\textrm{km}^2$ and Goro, 109,725 $\textrm{km}^2$) and being operated by the Ministry of Construction and ransporation. A three-dimensional digital elevation model(DEM) map was constructed using a physiographic map(1/25,000) and GIS software, Arc/Info, was used to the analysis of geofraphic factors. The topographic index of Dongok and Goro subcatchment was similar. As a results of the analysis, the model was validated that the simulated peak flow of a flood runoff was fit to the observed data. For the analysis of the effects of grid size, Dongok subcatchment was divided into 100,120-,240 m grid and Goro subcatchment was divided into grid and 120,200,350 m grid. It was shown that the peak flow increased in proportion to the increases of the grid size, but peak times were constant regardless of the grid size in both of the watershed.

  • PDF

Development of Web based Watershed and Sewer Management System using Computational Model and GIS (전산모형과 지리정보시스템을 결합한 Web 기반의 유역 및 하수도 관리시스템의 개발)

  • Kim, Joon Hyun;Park, Hyung Choon;Han, Yung Han
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.63-71
    • /
    • 2000
  • A web based watershed and sewer management system was developed for the analysis of stormwater runoff and sewer flow, and for optimal operation of sewer works using ArcView and SWMM. SWMM and ArcView were dynamically linked together using Avenue and Visual Basic in order to construct user-friendly management system. The developed system was applied to Choonchun city to verify its utilities. All the relevant field data were analyzed on the basis of developed system, and the modeling of runoff and sewer flow was implemented using RUNOFF and TRANSPORT blocks in SWMM. This system was connected to the management system of surface and subsurface environment management system in order to develop an integrated environmental management system. Futhermore, this system will be a critical part of overall control system of sewer works including sewer line and wastewater treatment plant. As this system can provide comprehensive prediction of flow and pollution profiles and analytical tool equipped with Web-GIS, it could serve widely as a tool not only for optimal management, but also for decision support system to examine the efficiency of planning and implementation of sewer projects.

  • PDF

Analysis of Flow-Weighted Mean Concentration(FWMC) Characteristics from Rural Watersheds (농업 및 산림유역의 강우유출수 유량가중평균농도 분석)

  • Shin, Min-Hwan;Shin, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.3-9
    • /
    • 2007
  • Stream flow and water quality were measured and analyzed with respect to flow-weighted mean concentrations (FWMCs) of 21 rainfall events from a forested watershed (Forest Research Watershed: FRW) and two mixed watersheds of agriculture and forest (YuPo-Ri Watershed: YPW and WolGog-ri Watershed: WGW) located in the middle of the North Han River basin. The monitoring of each watershed was one year and conducted between 2004 and 2006. YPW showed more intensive agricultural practices than WGW where traditional practices were common. The average of the 21 FWMCs were in the order of YPF>WGW>FRW and were significantly different from each other at the level of 0.05. It was shown that the land use with intensive agricultural practices produced and discharged more NPS pollutants than that with traditional practices and forest. Specially, SS concentrations from the mixed watersheds were significantly higher than those from FRW. Influencing factors on runoff were analyzed rainfall and watershed area. And rainfall intensity was greater impact on runoff than daily rainfall. Measured water quality indices were shown positive correlations among them in general. However, no significant correlation was shown between COD and nutrients(T-N and T-P).

Estimation of Baseflow Discharge through Several Streams in Jeju Island, Korea (제주도 주요하천의 기저유출량 산정)

  • Moon Duk-Chul;Yang Sung-Kee;Koh Gi-Won;Park Won-Bae
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.405-412
    • /
    • 2005
  • Groundwater in Jeju Island, flowing through main stream, is spring water from underground. To set a fixed quantity of groundwater flowing from surface in a hydrological view, 4 downstream (Woedo stream, Gangjung stream, Yeonwoe stream and Ongpo stream) were selected to calculate the characteristic of baseflow and the base-flow discharge through the data on tachometry. There were 11 to 14 level peak caused by runoff, mostly occurred during monsoon season. Also, duration of runoff was 15 to 25 hours, well reflecting the characteristic of inclined, short stream length in Jeju Island and pervious hydrogeographical feature. In case of Gangjung stream, Yeonwoe stream and Ongpo stream, variation of stream water level by baseflow rose above during summer, which was closely linked to the distribution of seasonal precipitation. From autumn to spring, water level fell below while that of Woedo stream remained the same all year round. Data on the water level observed in Woedo stream and Gangjung stream in every single minutes was applied to weir formula(equation of Oki and Govinda Rao) to calculate baseflow discharge. Also, using the data on current and water level calculated in Ongpo stream and Yeonwoe stream, water level-water flow rating was applied to assess base flow discharge.

Historical changing of flow characteristics over Asian river basins

  • Ha, Doan Thi Thu;Kim, Tae-Son;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.118-118
    • /
    • 2020
  • This study investigates the change of flow characteristics over 10 Asian river basins in the past 30 years (1976-2005). The variation is estimated from The Soil and Water Assessment Tool (SWAT) model outputs based on reanalysis data which was bias-corrected for Asian monsoon reagion. The model was firstly calibrated and validated using observed data for daily streamflow. Four statistical criteria were applied to evaluate the model performance, including Coefficient of determination (R2), Nash - Sutcliffe model efficiency coeffi cient (NSE), Root mean square error-observations standard deviation ratio (RSR), and Percentage Bias (PBIAS). Then parameters of the model were applied for the historical period 1976-2005. The estimates show a temporal non-considerable increasing rate of daily streamflow in most of the basins over the past 30 years. The difference of monthly discharge becomes more significant during the months in the wet season (June to September) in all basins. The seasonal runoff shows significant difference in Summer and Autumn, when the rainfall intensity is higher. The line showing averaged runoff/rainfall ratio in all basins is sharp, presenting high variation of seasonal runoff/rainfall ratio from season to season.

  • PDF

Interaction between Raindrops Splash and Sheet Flow in Interrill Erosion of Steep Hillslopes (급경사면의 세류간 침식에서 빗물튀김과 면상흐름의 상호작용)

  • Nam, Myeong Jun;Park, Sang Deog;Lee, Seung Kyu;Shin, Seung Sook
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.595-604
    • /
    • 2015
  • Interrill erosion by the rainfall is divided into a detachment of soil particles by raindrop splash when raindrops having kinetic energy strike on the surface soil and a sediment transport by sheet flow of surface runoff. Rainfall kinetic energy is widely used as an indicator expressing the potential ability to separate the soil particles from soil mass. In this study, the soil erosion experiments of rainfall simulation were operated to evaluate the effects of rainfall kinetic energy on interrill erosion as using the strip cover to control raindrop impact. The kinetic energy from rainfall simulator was 0.58 times to that of natural rainfall. Surface runoff and subsurface runoff increased and decreased respectively with increase of rainfall intensity. Surface runoff discharge from plots of non-cover was 1.82 times more than that from plots with cover. The rainfall kinetic energy influenced on the starting time of surface and subsurface runoff. Soil erosion quantity greatly varied according to existence of the surface cover that can intercept rainfall energy. Sediment yields by the interaction between raindrop splash and sheet flow increased 3.6~5.9 times and the increase rates of those decreased with rainfall intensity. As a results from analysis of relationship between stream power and sediment yields, rainfall kinetic energy increased the transport capacity according to increase of surface runoff as well as the detachment of soil particles by raindrop splash.

Derivation of the Instantaneous Unit Hydrograph and Estimation of the Direct Runoff by Using the Geomorphologic Parameters (지상인자에 의한 순간단위도 유도와 유출량 예측)

  • 천만복;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.87-101
    • /
    • 1990
  • The purpose of this study is to estimate the flood discharge and runoff volume at a stream by using geomorphologic parameters obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahier. The present model is modified from Cheng' s model which derives the geomorphologic instantaneous unit hydrograph. The present model uses the results of Laplace transformation and convolution intergral of probability density function of the travel time at each state. The stream flow velocity parameters are determined as a function of the rainfall intensity, and the effective rainfall is calculated by the SCS method. The total direct runoff volume until the time to peak is estimated by assuming a triangular hydrograph. The model is used to estimate the time to peak, the flood discharge, and the direct runoff at Andong, Imha. Geomchon, and Sunsan basin in the Nakdong River system. The results of the model application are as follows : 1.For each basin, as the rainfall intensity doubles form 1 mm/h to 2 mm/h with the same rainfall duration of 1 hour, the hydrographs show that the runoff volume doubles while the duration of the base flow and the time to peak are the same. This aggrees with the theory of the unit hydrograph. 2.Comparisions of the model predicted and observed values show that small relative errors of 0.44-7.4% of the flood discharge, and 1 hour difference in time to peak except the Geomchon basin which shows 10.32% and 2 hours respectively. 3.When the rainfall intensity is small, the error of flood discharge estimated by using this model is relatively large. The reason of this might be because of introducing the flood velocity concept in the stream flow velocity. 4.Total direct runoff volume until the time to peak estimated by using this model has small relative error comparing with the observed data. 5.The sensitivity analysis of velocity parameters to flood discharge shows that the flood discharge is sensitive to the velocity coefficient while it is insensitive to the ratio of arrival time of moving portion to that of storage portion of a stream and to the ratio of arrival time of stream to that of overland flow.

  • PDF

The furulamelllal study in order to obtain the hydrological design basis for hydrological structures in Korea (Run ofl estimate and Flood part) (한국에 있어서 제수문구조물의 설계의 기준을 주기 위한 수문학적 연구(류거, 홍수 편))

  • 박성우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.1
    • /
    • pp.1011-1034
    • /
    • 1966
  • This thesis is the final report which has long been studied by the author to obtain the design basis for various hydrological constructions with the specific system suitable to the natural environmental conditions in Korea. This report is divided into two parts: one is to estimate runoff volume from watersheds and the other to estimate the peak discharge for a single storm. According to the result of observed runoff record from watersheds, it is known that Kajiyama formula is useful instrument in estimating runoff volume from watersheds in this country. But it has been found that this formula shows us 20-30% less than the actual flow. Therefore, when wihed to bring a better result, the watershed characteristics coefficient in this formula, that is, f-value, should be corrected to 0.5-0.8. As for the method to estimate peak discharge from drainage basin, the author proposes to classify it in two ways; one is small size watershed and the other large size watershed. The maximum -flood discharge rate $Q_p$ and time to peak Pt obtained from the observed record on the small size watershed are compared by various methods and formulas which are based upon the modern hydrological knowledge. But it was fou.d that it. was not a satisfied result. Therefore, the author proposes. tocomputate $Q_p$, to present 4.0-5.0% for the total runoff volume ${\Sigma}Q$.${\Sigma}Q$ is computed under the assumption of 30mm 103s in watershed per day and to change the theoritical total flow volume to one hour dura tion total flow rate when design daily storm is given. Time to peak Pt is derived from three parameters which are u,w,k. These are computed by relationship between total runoff volume (ha-m unit)and $Q_p$. (C.M.S. unit). Finally, the author checked out these results obtained from 51 hydrographs and got a satisfied result. Therefore the author suggested the model of design dimensionless unit-hydrograph. And the author believes that this model will be much available at none runoff record river site. In the large size watersheds in Korea when the maximum discharge occurs, the effective rainfall is two consequtive stormy days. So the loss in watershed was assutned as 6Omm/2days,and the author proposed 3-hour-daration hydrograph flow distribution percentage. This distribution percentage will be sure to form the hydrograph coordinate.

  • PDF