• Title/Summary/Keyword: Runoff analysis algorithm

Search Result 40, Processing Time 0.025 seconds

Analysis of Rainfall-Runoff Characteristics on Impervious Cover Changes using SWMM in an Urbanized Watershed (SWMM을 이용한 도시화유역 불투수율 변화에 따른 강우유출특성 분석)

  • Oh, Dong Geun;Chung, Se Woong;Ryu, In Gu;Kang, Moon Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.61-70
    • /
    • 2010
  • The increase of impervious cover (IC) in a watershed is known as an important factor causing alteration of water cycle, deterioration of water quality and biological communities of urban streams. The study objective was to assess the impact of IC changes on the surface runoff characteristics of Kap Stream basin located in Geum river basin (Korea) using the Storm Water Management Model (SWMM). SWMM was calibrated and verified using the flow data observed at outlet of the watershed with 8 days interval in 2007 and 2008. According to the analysis of Landsat satellite imagery data every 5 years from 1975 to 2000, the IC of the watershed has linearly increased from 4.9% to 10.5% during last 25 years. The validated model was applied to simulate the runoff flow rates from the watershed with different IC rates every five years using the climate forcing data of 2007 and 2008. The simulation results indicated that the increase of IC area in the watershed has resulted in the increase of peak runoff and reduction of travel time during flood events. The flood flow ($Q_{95}$) and normal flow ($Q_{180}$) rates of Kap Stream increased with the IC rate. However, the low flow ($Q_{275}$) and drought flow ($Q_{355}$) rates showed no significant difference. Thus the subsurface flow simulation algorithm of the model needs to be revisited for better assessment of the impact of impervious cover on the long-term runoff process.

Runoff Analysis by the Geomorphoclimatic Linear Reservoir Model (지형기후학적 선형저수지 모델에 의한 유출해석)

  • 조홍제
    • Water for future
    • /
    • v.18 no.2
    • /
    • pp.143-152
    • /
    • 1985
  • A method is suggested for the reappearance of a surface runoff hudorgraph of a river basin by linking the hydrologic response of a catchment represented by the instantaneous unit hydrograph(IUH) with the Horton's empirical gemorphologic laws. The geomorphologic theory of the IUH developed by G. Itrube et al. and the geomorphoclimatic theory of the IUH developed by Bras et al. are used to derive the new hydrologic response function in consideration of geomorphologic parameters and climatic characteristics by applying to Sukekawa's rainfall-runoff model. The derived response function was tested for on some observed hydrographs in a natural watershed and showed promising, and by considering a drainage basin as m(1∼4) identical linear reservoir in series, it was founded that the model(m=2) is most applicable to predict hydrologic response regardless of the size of basins. A modelization algorithm of a basin using Sthahler's ordering scheme of drainage network will give good result in analysis of the surface runoff huydrograph by the method of this study.

  • PDF

Application of Self-Organizing Map for the Analysis of Rainfall-Runoff Characteristics (강우-유출특성 분석을 위한 자기조직화방법의 적용)

  • Kim, Yong Gu;Jin, Young Hoon;Park, Sung Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.61-67
    • /
    • 2006
  • Various methods have been applied for the research to model the relationship between rainfall-runoff, which shows a strong nonlinearity. In particular, most researches to model the relationship between rainfall-runoff using artificial neural networks have used back propagation algorithm (BPA), Levenberg Marquardt (LV) and radial basis function (RBF). and They have been proved to be superior in representing the relationship between input and output showing strong nonlinearity and to be highly adaptable to rapid or significant changes in data. The theory of artificial neural networks is utilized not only for prediction but also for classifying the patterns of data and analyzing the characteristics of the patterns. Thus, the present study applied self?organizing map (SOM) based on Kohonen's network theory in order to classify the patterns of rainfall-runoff process and analyze the patterns. The results from the method proposed in the present study revealed that the method could classify the patterns of rainfall in consideration of irregular changes of temporal and spatial distribution of rainfall. In addition, according to the results from the analysis the patterns between rainfall-runoff, seven patterns of rainfall-runoff relationship with strong nonlinearity were identified by SOM.

APPLICATION OF GRID-BASED KINEMATIC WAVE STORM RUNOFF MODEL(KIMSTORM)

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Sok
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.321-330
    • /
    • 2000
  • The grid-based KIneMatic wave STOrm Runoff Model(Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of overland flow, subsurface flow and stream flow was evaluated at two watersheds. This model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. The model programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF

Parameter Estimation of Tank Model by Data Interval and Rainfall Factors for Dry Season (건기 실측간격, 강우인자에 따른 탱크모형 매개변수 추정)

  • Park, Chae Il;Baek, Chun Woo;Jun, Hwan Don;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.856-864
    • /
    • 2006
  • For estimating the minimum discharge to maintain a river, low flow analysis is required and long term runoff records are needed for the analysis. However, runoff data should be estimated to run a hydrologic model for ungaged river basin. For the reason, parameter estimation is crucial to simulate rainfall-runoff events for those basins using Tank model. In this study, only runoff data recorded for dry season are used for parameter estimation, which is different to other methods based on runoff data recorded for wet and dry seasons. The Harmony Search algorithm is used to determine the optimum parameters for Tank model. The coefficient of determination ($R^2$) is served as the objective function in the Harmony Search. In cases that recorded data are insufficient, the recording interval is changed and Empirical CDF is adopted to analyze the estimated parameters. The suggested method is applied to Yongdam dam, Soyanggang dam, Chungju dam and Seomjingang dam basins. As results, the higher $R^2s$ are obtained when the shorter recording interval, the better recorded data quality, and the more rainfall events recorded along with certain rainfall amount is. Moreover, when the total rainfall is higher than the certain amount, $R^2$ is high. Considering the facts found from this study for the low flow analysis, it is possible to estimate the parameters for Tank model properly with the desired confidence level.

Saturation Tendency for Tracing of Runoff Path on GIS Platform (유출경로 추적을 위한 GIS상에서의 유역 포화성향 고찰)

  • Kim, Sanghyun;Kunyeoun Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1997.05a
    • /
    • pp.192-198
    • /
    • 1997
  • The spatial variation of saturation tendency can be calculated from the Digital Elevation Model (DEM) employing the multiple flow direction algorithm on the platform of Geographic Resources Support Analysis System (GRASS). It is expected that a bettter understanding of dynamical runoff processes in hillslope hydrological scale is obtained through tracing various runoff path such as infiltration excess overland flow component, strutation excess overland flow component and subsurface runoff component. A procedure is suggested to consider the effect of a tile system on calculating the topographic index. A small agricultural subwatershed (3.4 km2) is used for this study.

  • PDF

Flood Runoff Analysis on the Anseong-cheon watershed using TOPMODEL and Muskingum method. (TOPMODEL과 Muskingum 기법을 이용한 안성천유역의 홍수유출분석)

  • Kwon, Hyung-Joong;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.289-292
    • /
    • 2002
  • In this study, a topography based hydrologic model (TOPMODEL) was tested on the Anseong-cheon watershed. Pit in watershed was removed by liner trend surface interpolator. The DTM Analysis program is used to derived a distribution of ln($a/tan{\beta}$) values from DEM (Digital Elevation Model) using the MDF (Multiple Direction Flow) algorithm of Quinn et al (1995). Current TOPMODEL program limits are number of time step, ln($a/tan{\beta}$) increment, delay histogram ordinate and size of subcatchment pixel maps. Therefore, TOPMODEL is not suitable for application of large watershed. Muskingum method and watershed division enhance grid pixel resolution for rainfall-runoff simulation accuracy.

  • PDF

Development of Grid Based Distributed Rainfall-Runoff Model with Finite Volume Method (유한체적법을 이용한 격자기반의 분포형 강우-유출 모형 개발)

  • Choi, Yun-Seok;Kim, Kyung-Tak;Lee, Jin-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.895-905
    • /
    • 2008
  • To analyze hydrologic processes in a watershed requires both various geographical data and hydrological time series data. Recently, not only geographical data such as DEM(Digital Elevation Model) and hydrologic thematic map but also hydrological time series from numerical weather prediction and rainfall radar have been provided as grid data, and there are studies on hydrologic analysis using these grid data. In this study, GRM(Grid based Rainfall-runoff Model) which is physically-based distributed rainfall-runoff model has been developed to simulate short term rainfall-runoff process effectively using these grid data. Kinematic wave equation is used to simulate overland flow and channel flow, and Green-Ampt model is used to simulate infiltration process. Governing equation is discretized by finite volume method. TDMA(TriDiagonal Matrix Algorithm) is applied to solve systems of linear equations, and Newton-Raphson iteration method is applied to solve non-linear term. Developed model was applied to simplified hypothetical watersheds to examine model reasonability with the results from $Vflo^{TM}$. It was applied to Wicheon watershed for verification, and the applicability to real site was examined, and simulation results showed good agreement with measured hydrographs.

Real-time Recursive Forecasting Model of Stochastic Rainfall-Runoff Relationship (추계학적 강우-유출관계의 실시간 순환예측모형)

  • 박상우;남선우
    • Water for future
    • /
    • v.25 no.4
    • /
    • pp.109-119
    • /
    • 1992
  • The purpose of this study is to develop real-time streamflow forecasting models in order to manage effectively the flood warning system and water resources during the storm. The stochastic system models of the rainfall-runoff process using in this study are constituted and applied the Recursive Least Square and the Instrumental Variable-Approximate Maximum Likelihood algorithm which can estimate recursively the optimal parameters of the model. Also, in order to improve the performance of streamflow forecasting, initial values of the model parameter and covariance matrix of parameter estimate errors were evaluated by using the observed historical data of the hourly rainfall-runoff, and the accuracy and applicability of the models developed in this study were examined by the analysis of the I-step ahead streamflow forecasts.

  • PDF

Grid-Based KlneMatic Wave STOrmRunoff Model (KIMSTORM)(I) - Theory and Model - (격자기반의 운동파 강우유출모형 개발(I) - 이론 및 모형 -)

  • Kim, Seong-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.303-308
    • /
    • 1998
  • A grid-based KInematic were STOrm Runoff Model (KIMSTORM) with predicts temporal and spatial distributions of saturalted orerland flow, subsurface flow and stream flow in a watershed was developed. The model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each grid element by using grid-based water balance of hydrologic components. The model which is programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture within the watershed.

  • PDF