• Title/Summary/Keyword: Runge-Kutta 4th

Search Result 104, Processing Time 0.025 seconds

Unsteady Flow and Noise Characteristics of a Wing in Ground Effect at Close Proximity (근접 지면효과를 받는 날개의 비정상 유동 소음 특성)

  • Seo J. H.;Kho S. R.;Moon Y. J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.783-786
    • /
    • 2002
  • The unsteady turbulent flow characteristics of NACA4406 airfoil at close proximity to the pound are numerically investigated, especially focused on the noise generation mechanism near the blunt trailing edge. The unsteady two-dimensional compressible Wavier-Stokes equations with a Spalart-Allmaras turbulence closure model are solved by the 6th-order compact scheme and the 4th-order Runge-Kutta scheme. The computation shows a noise generation by a feedback mechanism at the blunt tailing edge, where the acoustic-fluidic coupling occurs between the wall-reflected sound waves and the periodically disturbed turbulent shear layer.

  • PDF

Study on the Phase Interface Tracking Numerical Schemes by Level Set Method (Level Set 방법에 의한 상경계 추적 수치기법 연구)

  • Kim, Won-Kap;Chung, Jae-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.116-121
    • /
    • 2006
  • Numerical simulations for dendritic growth of crystals are conducted in this study by the level set method. The effect of order of difference is tested for reinitialization error in simple problems and authors founded in case of 1st order of difference that very fine grids have to be used to minimize the error and higher order of difference is desirable to minimize the reinitialization error The 2nd and 4th order Runge-Kutta scheme in time and 3rd and 5th order of WENO schemes with Godunov scheme are applied for space discretization. Numerical results are compared with the analytical theory, phase-field method and other researcher's level set method.

  • PDF

Impact Analysis of Oleo-pneumatic Nose Strut for Light Aircraft (소형항공기 올레오 타입 전방착륙장치 충격해석)

  • Park, Ill-Kyung;Choi, Sun-Woo;Jang, Jae-Won
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, a nonlinear 2 degree of freedom mathematical model has been developed for impact analysis of the nose landing gear of a light aircraft which is composed of an wheel & tire, an Oleo-pneumatic shock strut and the castering wheel fork for the differential braking steering, and then the response of impact is computed using a numerical method. The mathematical model of a nose landing gear contains nonlinear characteristics which are an impact load - deflection property of a tire and internally frictional forces between an inner surface of an upper cylinder and a bearing of a lower rod due to side forces like the declined angle of strut, the moment due to an wheel fork, the side drag due to a steering and it is computed using the 4th-order Runge-Kutta method. The comparison process between analytical results and experimental results of the other proven nose landing gear is carried out to verify the mathematical model.

  • PDF

Non-linear Shimmy Analysis of a Nose Landing Gear with Friction (마찰을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.605-611
    • /
    • 2011
  • Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. It is caused by a couple of conditions such as a low torsional stiffness of the strut, a free-play in the landing gear, a wheel imbalance, or worn parts, and it may make the aircraft unstable. This study was performed for an analysis of the shimmy stability on a small aircraft. A nose landing gear was modeled as a linear system and characterized by state-equations which were used to analyze the stability both in the frequency and time-domain for predicting whether the shimmy occurs and investigating a good design range of the important parameters. The root-locus method and the 4th Runge-Kutta method were used for each analysis. Because the present system has a simple mechanism using a friction to reinforce the stability, the friction, a non-linear factor, was linearized by a describing function and considered in the analysis and observed the result of the instability reduction.

Combustion Characteristics and Performance Prediction of PE-GOX Hybrid Rocket Motor Part II : Internal Ballistic Performance (PE-GOX 하이브리드 모터의 연소특성 및 성능 예측 기법 Part II : 내탄도 성능)

  • Yoon, Chang-Jin;Song, Na-Young;Yoo, Woo-Jun;Jeon, Chang-Soo;Kim, Jin-Kon;Moon, Hee-Jang;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.79-85
    • /
    • 2007
  • An internal ballistic model to predict the performance of a Polyethylene-GOX (PE-GOX) hybrid motor was proposed and evaluated. A theoretical treatment of the model was followed by detail discussion of each of the factors affecting the overall performance. The present model consists of the governing equations by considering the unsteady burn-back rate of the fuel grain and on-off response characteristics of a oxygen-supply valve. The numerical results using the 4th order Runge-Kutta scheme with temporal physicochemical properties showed good agreements with test results and the global effects of the performance parameters, such as the burning area of the fuel grain, O/F ratio, and etc., on the performance of the motor were analyzed.

Linear Spectral Method for Simulating the Generation of Regular Waves by a Moving Bottom in a 3-dimensional Space (3차원 공간에서 바닥의 움직임에 의한 규칙파의 생성을 모의할 수 있는 선형 스펙트럼법)

  • Jae-Sang Jung;Changhoon Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2024
  • In this study, we introduce a linear spectral method capable of simulating wave generation and transformation caused by a moving bottom in a 3-dimensional space. The governing equations are linear dynamic free-surface boundary conditions and linear kinematic free-surface boundary conditions, which are solved in Fourier space. Solved velocity potential and free-surface displacement should satisfy continuity equation and kinematic bottom boundary condition. For numerical analysis, a 4th order Runge-Kutta method was utilized to analyze the time integral. The results obtained in Fourier space can be converted into velocity potential and free-surface displacement in a real space using inverse Fourier transform. Regular waves generated by various types of moving bottoms were simulated with the linear spectral method. Additionally, obliquely generated regular waves using specified bottom movements were simulated. The results obtained from the spectral method were compared to analytical solutions, showing good agreement between the two.

An Analytical Study on Camshaft Locus at Camshaft Bearing in a Direct Acting OHC Valve Train System (직접 구동 OHC 밸브 트레인 캠 축의 운동 궤적 해석)

  • 지유철;조명래;정진영;최상현;한동철;최재권
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.53-59
    • /
    • 1997
  • The camshaft locus at camshaft beating in a direct acting OHC valve train system has been investigated using the transient method. Forces applied to the camsfiaft are composed of two components, one is the transfer force between the cam and the tappet, the other is the frictional force. These forces have been calculated using the lumped mass model and the elastohydrodynamic lubrication theory. The alternating direction implicit method has been used for the numerical analysis of Reynolds equation, and 4th order Runge-Kutta method has been used for the transient journal locus analysis. The effects of various load conditions are presented in the form of journal locus. As a result of the analysis, it has been found that camshaft bearings were mainly in the hydrodynamic lubrication condition.

Bridge flutter control using eccentric rotational actuators

  • Korlin, R.;Starossek, U.
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.323-340
    • /
    • 2013
  • An active mass damper system for flutter control of bridges is presented. Flutter stability of bridge structures is improved with the help of eccentric rotational actuators (ERA). By using a bridge girder model that moves in two degrees of freedom and is subjected to wind, the equations of motion of the controlled structure equipped with ERA are established. In order to take structural nonlinearities into consideration, flutter analysis is carried out by numerical simulation scheme based on a 4th-order Runge-Kutta algorithm. An example demonstrates the performance and efficiency of the proposed device. In comparison with known active mass dampers for flutter control, the movable eccentric mass damper and the rotational mass damper, the power demand is significantly reduced. This is of advantage for an implementation of the proposed device in real bridge girders. A preliminary design of a realization of ERA in a bridge girder is presented.

A Study on the Compression Process of Balanced Type Vane Pump for Electro-Hydraulic Power Steering (EHPS용 압력 평형형 베인 펌프의 압축 과정에 관한 연구)

  • 조명래;한동철;장주섭;박민호;이충호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.215-222
    • /
    • 1996
  • This paper reports on theoretical study of the compression process within balanced type vane pump for Electro-Hydraulic Power Steering(EHPS). Equations fo camring profiles are derived, then displacements, velocities, accelerations, and jerks are calculated. Vane side leakages, vane slit leakages, and rotor side leakages are considered and calculated. Numerical integration of flow equation is performed using 4th Runge-Kutta method. As a result of analysis, it is found that chamber pressure depends on rotational speeds, bulk modulus of fluid, notches, camring profiles, and positions of delivery port. Especially, the variation of notch area is the most important factor that prevents pressure from rapid rising.

  • PDF

Computer Simulations of 4-Wheeled Vehicle Manoeuvres Using a 3-Dimensional Double-Track Vehicle Model (3차원 차량모델을 이용한 자동차 주행거동의 컴퓨터 시뮬레이션)

  • Choi, Y.H.;Lee, J.H.;Lee, J.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.97-108
    • /
    • 1995
  • A 3-dimensional double track vehicle model, that has 12-degress-of-freedom, was proposed to analyze handling and riding behaviours of an automotive car. Nonlinear characteristics of the suspension and steering systems of the vehicle model were considered in its equations of motion, which were solved by using the 4th-order Runge-Kutta integration method. Computer simulations for lane change, steady-state handling, and running-over-bump manoeuvres were made and verified by vehicle tests on proving ground. The computed results of the proposed model showed better agreement with test results than those of the conventional 2-dimensional single track model did. Especially they showed good accuracy near the characteristic speed and in high lateral accelerated manoeuvres.

  • PDF