• 제목/요약/키워드: Runge Kutta Method

검색결과 502건 처리시간 0.023초

자석의 반발력을 이용한 원격조종용 촉각궤환장치 (Tactile feedback device using repulsive force of the magnets for teleoperation)

  • 안인석;문용모;이정훈;박종오;이종원;우광방
    • 제어로봇시스템학회논문지
    • /
    • 제3권1호
    • /
    • pp.67-76
    • /
    • 1997
  • In this paper we developed a tactile feedback device using repulsive force of magnets. The force of the tactile feedback device was derived from the Maxwell's stress method by using the concept of magnetic charge. Magnetic repulsive force is linear function with respect to current and nonlinear to displacement. Experimental data shows these characteristics. To compensate the fact that the presented tactile feedback device can not be controlled by close loop control, we developed a simulation model which predicts output displacement and force by using Runge-Kutta method. And, this paper evaluated the presented tactile feedback device and compared it with commercial tactile feedback devices.

  • PDF

유해 할로겐화 탄화수소 폐기물 처리를 위한 열분해 반응 (Pyrolysis Reaction for the Treatment of Hazardous Halogenated Hydrocarbon Waste)

  • 조완근
    • 한국환경과학회지
    • /
    • 제6권4호
    • /
    • pp.399-407
    • /
    • 1997
  • The pyrolysis reactions of atomic hydrogen with chloroform were studied In a 4 cm 1.6. tubular flow reactor with low flow velocity 1518 cm/sec and a 2.6 cm 1.4. tubular flow reactor with high flow velocity (1227 cm/sec). The hydrogen atom concentration was measured by chemiluminescence titration with nitrogen dioxide, and the chloroform concentrations were determined using a gas chromatography. The chloroform conversion efficiency depended on both the chloroform flow rate and linear flow velocity, but 416 not depend on the flow rate of hydrogen atom. A computer model was employed to estimate a rate constant for the initial reaction of atomic hydrogen with chloroform. The model consisted of a scheme for chloroform-hydrogen atom reaction, Runge-Kutta 4th-order method for Integration of first-order differential equations describing the time dependence of the concentrations of various chemical species, and Rosenbrock method for optimization to match model and experimental results. The scheme for chloroform-hydrogen atom reaction Included 22 elementary reactions. The rate constant estimated using the data obtained from the 2.6 cm 1.4. reactor was to be 8.1 $\times$ $10^{-14}$ $cm^3$/molecule-sec and 3.8 $\times$ $10^{-15}$ cms/molecule-sec, and the deviations of computer model from experimental results were 9% and 12% , for the each reaction time of 0.028 sec and 0.072 sec, respectively.

  • PDF

IRK vs Structural Integrators for Real-Time Applications in MBS

  • Dopico D.;Lugris U.;Gonzalez M.;Cuadrado J.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.388-394
    • /
    • 2005
  • Recently, the authors have developed a method for real-time dynamics of multibody systems, which combines a semi-recursive formulation to derive the equations of motion in dependent relative coordinates, along with an augmented Lagrangian technique to impose the loop closure conditions. The following numerical integration procedures, which can be grouped into the so-called structural integrators, were tested : trapezoidal rule, Newmark dissipative schemes, HHT rule, and the Generalized-${\alpha}$ family. It was shown that, for large multi body systems, Newmark dissipative was the best election since, provided that the adequate parameters were chosen, excellent behavior was achieved in terms of efficiency and robustness with acceptable levels of accuracy. In the present paper, the performance of the described method in combination with another group of integrators, the Implicit Runge-Kutta family (IRK), is analyzed. The purpose is to clarify which kind of IRK algorithms can be more suitable for real-time applications, and to see whether they can be competitive with the already tested structural family of integrators. The final objective of the work is to provide some practical criteria for those interested in achieving real-time performance for large and complex multibody systems.

전자유압식 초고압 연료분사계의 시뮬레이션에 관한 연구 (Computer Simulation of the Electronic Hydraulic Ultra - High Pressure Fuel Injection System)

  • 장세호;안수길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.82-92
    • /
    • 1996
  • A computer simulation with predict the fuel injection rates and the fuel injection pressure behaviors in diesel engine fuel injection systems would by very useful in designing or improving fuel injection systems. In this paper we developed computer program in order to predict the behaviors of the fuel injection rate and the injection pressure for Electronic Hydraulic Ultra-High Pressure Fuel Injection System. We've applied the continuity and momentum equations for the hydraulic phenomena and the dynamics of individual components of the Electronic Hydraulic Fuel Injection System. To solve all the equations numerically we've applied the Runge-kutta IV method. Water hammer equations were applied for the hydraulic pipe solution, and the method of characteristics was employed in our calculations. The simulation results were compared with the experimental results for: Accumulator pressure, Injection pressure and unjection rate. As a result, The simulation results agree very well with our experimental results. We found that a large accumulator and the high speed solenoid valve were required, and the compression volume of the fuel had to be as small as possible in order to acheive ultra-high pressure fuel injection.

  • PDF

자유표면을 포함한 선체주위 난류유동 해석 코드 개발 (Code Development for Computation of Turbulent Flow around a Ship Model with Free-Surface)

  • 김정중;김형태;반석호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.145-155
    • /
    • 1998
  • A computer code has been developed for the computation of the viscous flow around a ship model with the free surface. In this code, the incompressible Reynolds-averaged Navier-Stokes equations are solved numerically by a finite difference method which employes second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration of the governing equations. For the turbulence closure, a modified version of the Baldwin-Lomax model is exploited. The location of the free surface is determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and the boundary-fitted grid is generated at each time step so that one of the grid surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition is applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method and the computer code developed in the present study, the numerical computations are carried out for both Wigley parabolic hull and Series 60 $C_B=0.6$ ship model and the computational results are compared with the experimental data.

  • PDF

초음파 유량계를 통하는 기체유동의 CFD 해석 (A CFD Analysis of Gas Flow through an Ultrasonic Meter)

  • 김재형;김희동;이호준;황상윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.998-1003
    • /
    • 2003
  • Ultrasonic flow metering(UFM) technology is being received much attention from a variety of industrial fields to exactly measure the flow rate. The UFM has much advantage over other conventional flow meter systems, since it has no moving parts, and offers good accuracy and reliability without giving any disturbances to measure the flow rate, thereby not causing pressure losses in the flow fields. In the present study, 3-dimensional, unsteady, compressible Navier-Stokes equations are solved by a finite volume scheme, based upon the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral method for time derivatives. In order to simulate multi-path ultrasonic flow meter, an excited pressure signal is applied to three different locations upstream, and the pressure signals are received at three different locations downstream. The mean flow velocities are calculated by the time difference between upstream and downstream propagating pressure signals. The obtained results show that the present CFD method simulates successfully ultrasonic meter gas flow and the mean velocity measured along the chord near the wall is considerably influenced by the boundary layers.

  • PDF

가스차단기 모선부의 온도상승 예측 프로그램 개발 (Development of the Temperature Prediction Program for the Bus Bar of a Gas-insulated Switchgear)

  • 함진기;김영기;이희원;김진수;송석현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.169-174
    • /
    • 2003
  • The thermal design of the bus bar of a Gas-Insulated Switchgear(GIS) becomes important since the current-carrying capacity of the GIS is limited by maximum operating temperature. In order to predict temperature rise of the bus bar, a program has been developed. Various heat sources possibly generated in the bus bar are calculated in the program. To estimate temperature rises at the bus bar caused by the heat balance between the heat generation and heat transfer, the finite volume method as well as the $4^{th}$ order Runge-Kutta method has been employed. In the experiments, temperature rises at conductor, contact part and external tank are measured for full-scale gas-insulated bus bars. The comparisons of the predicted values of the heat balance calculation to those of the experiments are made. From the comparisons, it is concluded that the developed program can predict the temperature rise of the bus bar quite well.

  • PDF

An Analysis of Dynamic Behavior of Fluid Dynamic Bearing for Hard Disk Drive Spindle Motor

  • Song, Young-Han;Yoo, Jin-Gyoo;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • 제4권1호
    • /
    • pp.18-26
    • /
    • 2003
  • Recently, fluid dynamic bearings (EDBs) have important applications in miniature rotating machines such as those found in the computer information storage industry, due to their outstanding low acoustic noise and NRRO (Non-Repeatable Run Out) characteristics. This research investigates the dynamic behavior of fluid dynamic bearings composed of hydrodynamic herringbone groove journal and spiral groove thrust bearing. The five degrees of freedom of FDB are considered to describe the real motion of a general rotor bearing system. The Reynolds equation and five nonlinear equations of motion for the dynamic behavior are solved simultaneously, The incompressible Reynolds equation is solved by using the finite element method (FEM) in order to calculate the pressure distribution in a fluid film and the five equations of motion by using the Runge-Kutta method. The reaction forces and moments are obtained by integrating the pressure along the fluid film. Numerical results are validated by comparing with the previously published experimental and numerical results. As a result the dynamic behavior of FDB spindle such as orbit, floating height, and angular orbit is investigated by considering the conical motion under the static and dynamic load conditions.

Numerical Analysis of the Unsteady Subsonic Flow around a Plunging Airfoil

  • Lee, Kyungwhan;Kim, Jaesoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권3호
    • /
    • pp.201-209
    • /
    • 2013
  • Much numerical and experimental research has been done for the flow around an oscillating airfoil. The main research topics are vortex shedding, dynamic stall phenomenon, MAV's lift and thrust generation. Until now, researches mainly have been concentrated on analyzing the wake flow for the variation of frequency and amplitude at a low angle of attack. In this study, wake structures and acoustic wave propagation characteristics were studied for a plunging airfoil at high angle of attack. The governing equations are the Navier-Stokes equation with LES turbulence model. OHOC (Optimized High-Order Compact) scheme and 4th order Runge-Kutta method were used. The Mach number is 0.3, the Reynolds number is, and the angle of attack is from $20^{\circ}$ to $50^{\circ}$. The plunging frequency and the amplitude are from 0.05 to 0.15, and from 0.1 to 0.2, respectively. Due to the high resolution numerical method, wake vortex shedding and pressure wave propagation process, as well as the propagation characteristics of acoustic waves can be simulated. The results of frequency analysis show that the flow has the mixed characteristics of the forced plunging frequency and the vortex shedding frequency at high angle of attack.

일정체적 원형 변단면 보-기둥의 자유진동 및 좌굴하중 (Free Vibrations and Buckling Loads of Tapered Beam-Columns of Circular Cross-Section with Constant Volume)

  • 이병구
    • 전산구조공학
    • /
    • 제9권3호
    • /
    • pp.135-143
    • /
    • 1996
  • 일정체적의 원형단면을 갖는 변단면 보-기둥의 자유진동 및 좌굴하중을 지배하는 미분방정식을 유도하고 이를 수치해석하였다. 미분방정식에는 축하중효과를 고려하였다. 원형단면의 반경변화는 포물선식을 채택하였고, 고정-고정, 고정-회전 및 회전-회전 보-기둥의 고유진동수 및 좌굴하중을 산출하였다. 수치해석의 결과로 무차원 고유진동수와 무차원 변수들 사이의 관계 및 무차원 좌굴하중과 단면비 사이의 관계를 그림에 나타내었고, 최강기둥의 단면비와 좌굴하중을 구하였다.

  • PDF