• 제목/요약/키워드: Runge Kutta Method

검색결과 503건 처리시간 0.031초

수축부 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발 (Development of A Three-Dimensional Euler Solver for Analysis of Contraction Flow)

  • 김진;김형태
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.175-181
    • /
    • 1995
  • Three-Dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for the various contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreements.

  • PDF

Computation of Turbulent Flows around Full-form Ships

  • Van Suak-Ho;Kim Hyoung-Tae
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.118-125
    • /
    • 1995
  • This paper presents the result of a computational study on the wake characteristics of two tanker models. i.e HSVA and DYNE hull forms. The focus of the study is on the distributions of axial. radial and tangential velocities of the two hull forms in way of the propeller, especially over the propeller disk. The effect of bilge vortices on the velocity distribution is also concerned. For the computation of stern and wake flows of the two hull forms. the incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are numerically solved by the use of a second order finite difference method, which employs a four stage Runge-Kutta scheme with a residual averaging technique and the Baldwin-Lomax model. The calculated pressure distributions on the hull surface and the axial. radial and tangential velocity distributions over the propeller disk are presented for the two hull forms. Finally, the result of wake analysis for the computed wake distribution over the propeller disk is given in comparison with those for the experimental wake distribution for the both hull forms.

  • PDF

2차원 증기터어빈 익렬유동의 수치적 해석 (A Numerical Analysis on Two-Dimensional Viscous Flowfield around a Steam Turbine Cascade)

  • 김유일;김귀순;김경천;하만영;박호동
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.64-69
    • /
    • 1995
  • A computer code for solving the Reynolds averaged full Navier-Stokes equations has bent developed for analysis of gas and steam turbine cascade flows with the option of using one of two types of turbulence model. One is the Baldwin-Lomax model and the other is standard $k-{\varepsilon}$ model. The numerical integration is based on the explicit four stage Runge-Kutta scheme and finite volume method. To be verified, the resulting code is applied to VKI turbine cascade and compared with the previous experimental results. Finally, the flowfield around a steam turbine cascade is analyzed. Comparisons with experimental data show that present numerical scheme is an accurate Navier-Stokes solver and can give very good predictions for both gas and steam turbine cascade flow.

  • PDF

나선홈을 가진 공기 동압베어링의 동역학적 거동 해석 (Analysis of Dynamic Behavior of Spiral Grooved Air-Dynamic Bearings)

  • 신용호;최우천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.498-501
    • /
    • 2000
  • Air dynamic bearings are inherently unstable in dynamic behavior due to the varying angle of a force produced and the nonlinear characteristics of stiffness. In this study, such dynamic behavior is obtained and compared with experimental results. A body axis coordinate system is employed to avoid the change of a moment of inertia. FDM is used to calculate the pressure distribution on the bearing surface and then the force acting on the rotor was calculated by integrating the pressure distribution. By integrating accelerations which are calculated from the equations of motion using the 4th order Runge-Kutta method, the pose of the bearing at each time step is obtained.

  • PDF

PCV(Positive Crankcase Ventilation) 밸브 최적화 설계 (Optimal Design of Positive Crankcase Ventilation Valve)

  • 이종훈;김재환;이연원
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.68-74
    • /
    • 2006
  • In the development of new automobiles, the efforts to reduce environmental problems like air pollution have been risen. Blowby gas consists of about $20{\sim}35%$ of total amount of Hydrocarbon (HC), one of dangerous pollutants issuing from automobiles. A PCV valve is a very small component in an automotive engine but it is a very important part. Because that a PCV valve is used to control blowby gas and to recirculate it into a manifold automatically. Although it has very simple operating principle, designing a PCV valve is so difficult due to interaction between fluid and solid. In this study, our purpose is to develop a design program for a PCV valve and to verify its efficiency. Both Bernoulli equation and 4th order Runge-Kutta method were adopted to predict spool displacements and flow patterns. Comparing with experiments, it was found that both spool diameters and displacements were predicted well, however, flow rates showed a little differences because of the assumption of non viscous flow.

  • PDF

실측형상오차를 이용한 HDD 스핀들용 볼베어링의 NRRO 해석 (NRRO Analysis of a HDD Spindle Ball Bearing using Measured Geometric Imperfection)

  • Kim, Young-Cheol;Park, Sang-Kyu;Yoon, Ki-Chan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.341.1-341
    • /
    • 2002
  • This paper presents theoretical analysis of the NRRO(the non-repeatable run-out) for a ball bearing with geometric imperfection. The 3DOF dynamic analysis of a ball bearing using the Runge-Kutta method is performed to calculate the displacement of shaft center. Frequency and magnitude characteristics of radial and axial vibrations are investigated. The ball form errors of the ball, the inner race, and the outer race in a HDD spindle ball bearing are precisely measured. (omitted)

  • PDF

레이저를 이용한 균일 금속 액적 생성 (Uniform metal droplet generation using laser)

  • 강대현;양영수;김용욱;조성규;박성민
    • 한국레이저가공학회지
    • /
    • 제5권1호
    • /
    • pp.23-31
    • /
    • 2002
  • The uniform metal droplet generation using Nd-YAG laser was studied and experiment was carried out. The shape and volume of developed droplet was measured and the Young-Laplace equation and equilibrium condition of force were applied this model. The differential equation predicting shape of droplet using equilibrium condition of force instead of Navier-stokes equation was induced and numerical solution of differential equation compared with experimentation data. The differential equation was solved by Runge-Kutta method. Surface tension coefficient of droplet was determined with numerical solution relate to experimental result under the statical condition. In case of dynamic vibration, metal droplet shape and detaching critical volume are predicted by recalculating proposed model. The result revealed that this model could reasonably describe the behavior of molten metal droplet on vibration.

  • PDF

Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems

  • Bayat, Mahmoud;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.657-661
    • /
    • 2017
  • In this paper, it has been tried to propose a new semi analytical approach for solving nonlinear vibration of conservative systems. Hamiltonian approach is presented and applied to high nonlinear vibration systems. Hamiltonian approach leads us to high accurate solution using only one iteration. The method doesn't need any small perturbation and sufficiently accurate to both linear and nonlinear problems in engineering. The results are compared with numerical solution using Runge-Kutta-algorithm. The procedure of numerical solution are presented in detail. Hamiltonian approach could be simply apply to other powerfully non-natural oscillations and it could be found widely feasible in engineering and science.

수치 해법을 이용하여 제진대에 부착된 가속도 센서의 진동 측정 (Using Numerical Solutions of the Vibration Measurement Accelerometers attached Vibration Isolator)

  • 신동호;이정우;이종원;오재응;이정윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.875-880
    • /
    • 2012
  • According to the fixation detailed drawing and lightweight anger tendency of the product the vibration control of precision equipments is essential and establishes under the equipments. so It is important to know vibration characteristics of vibration isolator. For this reason the accelerometer attaches in vibration isolator and measures an acceleration response. The acceleration response which is measured will lead double integral and will be able to predict a displacement of vibration isolator. However, in compliance with the effect of the accelerometer can not be accurately. From this paper, mass, damping ratio and natural frequency of the accelerometers by changing the vibration isolator to predict the acceleration response and the results were compared.

  • PDF

유압 베인 펌프의 압력 맥동에 관한 연구 (The Analytical Study on the Pressure Ripples in a Positive Displacement Vane Pump)

  • 김기동;조명래;한동철;최상현
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제26회 추계학술대회
    • /
    • pp.225-231
    • /
    • 1997
  • This paper reports on the theoretical study of the delivery pressure ripples of a positive displacement vane pump which is widely used for automobile power steering. Pressure ripples occur due to the flow tipples which induced cam ring profiles and reverse flow from the delivery ports. In this paper, the mathematical model for analyzing the pressure ripples has been presented, and set of the differential equationshave been solved using the Runge-Kutta method. As the results of analysis, instant ideal flow ripples, internal pressure, delivery pressure ripples, and delivery flow ripples have been presented. Internal pressure was related to delivery pressure variations, and amplitude of pressure tipples was increased with rotational speed and delivery pressure.

  • PDF