• Title/Summary/Keyword: Run-up Model

Search Result 220, Processing Time 0.026 seconds

Development of an intelligent system for Lagrangian structural identification and relaxation for integer programmings (정수계획 모형에서 라그란지안 구조정의 및 완화를 지원하는 지능형 시스템의개발)

  • 김철수;이재규;김민용
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.09a
    • /
    • pp.300-324
    • /
    • 1995
  • This research investigates the automatic identification of typical embedded structures in the Integer Programming(IP) models and automatic transformation of the problem to an adequate Lagrangian problem which can provide tight bounds within the acceptable run time. For this purpose, the structural distinctiveness of variables, constants, blocks of terms, and constraint chunks is identified to describe the structure of the IP model. To assist the identification of the structural distinctiveness, the representation by the knowledge based IP model formulator UNIK-IP is adopted. For the reasoning for the structural identification, the bottom-up, top-down, and case-based approaches are proposed. A prototype system UNIK-RELAX is developed to implement the approaches proposed in this research.

  • PDF

A Study on the improvement through the present state analysis of the industry field training (산업체 현장실습 운영 현황 분석을 통한 개선 방안에 관한 연구)

  • Park, Kyung-Woo;Park, Ik-su
    • Journal of Engineering Education Research
    • /
    • v.19 no.2
    • /
    • pp.97-101
    • /
    • 2016
  • This paper examines the industry field training education model, analyze the operational status proposed improvement measures. Data were analyzed using a field training participating students participating industry last three years. On the other hand analysis field training participating students increased, industry participation has decreased. And most of the students took part in the seasonal short-term job training. In addition, it was difficult to analyze the employment status field training operations follow-up member. In this paper, a field training operations support system management models and practical training courses organized field trips how to improve. Field training operations support will be strengthened through the work associated with the company expanding participation model introduced and is expected to increase in the long-term practical training, students participate in field training system improvement. Run the job training Improvement in future research presented in this paper attempts to analyze the students' employment status and results of operations involved.

Vibration Analysis of Driveline with Propeller Shaft Supported by Center Bearing when the Vehicle Starts Up (센터 베어링으로 지지된 추진축을 갖는 구동계의 차량 출발시 진동해석)

  • Lee, Chang-Ro;Kim, Hyo-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.929-934
    • /
    • 2002
  • This paper considers the vibration Problem of vehicle driveline which consists of two propeller shafts and the center bearing. The excessive vibration occurs at the center bearing when the vehicle starts to run. Using the kinematic constraints at the universal joint between two propeller shafts, we developed an one d.o.f model which describes the radial motion of the center bearing. We found out that the vibration occurs at the specific vehicle speed corresponding to the natural frequency of the model. Comparing the simulation results with test results we also show that the vibration at low vehicle speed is caused primarily by the feint angle and secondarily by the mis-aligned yoke flange rather than by the unbalance.

Analysis of Significance between SWMM Computer Simulation and Artificial Rainfall on Rainfall Runoff Delay Effects of Vegetation Unit-type LID System (식생유니트형 LID 시스템의 우수유출 지연효과에 대한 SWMM 전산모의와 인공강우 모니터링 간의 유의성 분석)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.3
    • /
    • pp.34-44
    • /
    • 2020
  • In order to suggest performance analysis directions of ecological components based on a vegetation-based LID system model, this study seeks to analyze the statistical significance between monitoring results by using SWMM computer simulation and rainfall and run-off simulation devices and provide basic data required for a preliminary system design. Also, the study aims to comprehensively review a vegetation-based LID system's soil, a vegetation model, and analysis plans, which were less addressed in previous studies, and suggest a performance quantification direction that could act as a substitute device-type LID system. After monitoring artificial rainfall for 40 minutes, the test group zone and the control group zone recorded maximum rainfall intensity of 142.91mm/hr. (n=3, sd=0.34) and 142.24mm/hr. (n=3, sd=0.90), respectively. Compared to a hyetograph, low rainfall intensity was re-produced in 10-minute and 50-minute sections, and high rainfall intensity was confirmed in 20-minute, 30-minute, and 40-minute sections. As for rainwater run-off delay effects, run-off intensity in the test group zone was reduced by 79.8% as it recorded 0.46mm/min at the 50-minute point when the run-off intensity was highest in the control group zone. In the case of computer simulation, run-off intensity in the test group zone was reduced by 99.1% as it recorded 0.05mm/min at the 50-minute point when the run-off intensity was highest. The maximum rainfall run-off intensity in the test group zone (Dv=30.35, NSE=0.36) recorded 0.77mm/min and 1.06mm/min in artificial rainfall monitoring and SWMM computer simulation, respectively, at the 70-minute point in both cases. Likewise, the control group zone (Dv=17.27, NSE=0.78) recorded 2.26mm/min and 2.38mm/min, respectively, at the 50-minutes point. Through statistical assessing the significance between the rainfall & run-off simulating systems and the SWMM computer simulations, this study was able to suggest a preliminary design direction for the rainwater run-off reduction performance of the LID system applied with single vegetation. Also, by comprehensively examining the LID system's soil and vegetation models, and analysis methods, this study was able to compile parameter quantification plans for vegetation and soil sectors that can be aligned with a preliminary design. However, physical variables were caused by the use of a single vegetation-based LID system, and follow-up studies are required on algorithms for calibrating the statistical significance between monitoring and computer simulation results.

ARDL-Bounds Testing Approaches to the Factor Price Equalization: The Case of Korea, U.S., and Japan (ARDL-Bounds Test에 의한 요소가격균등화 검정: 한국, 미국, 일본을 중심으로)

  • Rhee, Hyun-Jae
    • International Area Studies Review
    • /
    • v.15 no.2
    • /
    • pp.101-123
    • /
    • 2011
  • The paper is basically attempted to reveal the factor price equalization(FPE) on Korea, United States, and Japan by the ARDL-bounds testing. Wage-rental ratio and relative commodity prices between Korea, United States, and Japan are analyzed by employing equality and convergence frameworks. Empirical evidences are shown that necessary and sufficient conditions for the FPE seems to be easily satisfied in a small country such as Korea rather than large ones as like United States and Japan. And, the FPE is more easily achieved by a nominal term rather than the real term. Due to the fact that an error correction term in the Error Correction Model is insignificant, direct mobility of labor and capital between the countries is not that effective to a short run adjustment. It implies that the FPE is in general going through a long run path. It also has to be mentioned that a trade policy has to selectively implemented depending on the weight of trading volumes and it has to be build up by a long run basis.

A Study on actual state of engineering education and research for improvement (공학교육의 실태와 개선방안에 대한 연구)

  • Park, Ik-Su;Cho, Sung-Eui
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.1 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • In this paper, local industry target by analyzing the actual state of engineering education-oriented, demand for engineering education to come up with ways to improve. To this end, training human resources training program in engineering education practice Caps-tone design, Cooperative system, contract-type as the main theme of human resources in the southwestern industrial target academic staff investigate the actual conditions were run cooperative education programs. Survey, southwestern regional industry operating experience, most industry-university cooperative education program that was unsatisfactory. In addition, promoting Cooperative system experience in the industry will promote the future looked reservation position, while the Caps-tone design is somewhat academic partners participating a majority opinion education program run by the model will be developing. Regional strategy based on future demand for industry-oriented engineering education program for running is to come up with ways improvements.

  • PDF

A Comparative Study of Global Economic Models for Climate Change Policy: A Structural and Technological Analysis (기후변화 글로벌 경제모형의 구조 및 기술적 변화에 따른 비교 분석)

  • Hong, Jong Ho;Kim, Changhun
    • Environmental and Resource Economics Review
    • /
    • v.20 no.3
    • /
    • pp.419-457
    • /
    • 2011
  • This study aims at understanding the characteristics of global economic models, which are widely used for climate change policy analysis. A literature review study was conducted in order to derive general features of top-down models such as CGE and bottom-up/hybrid models such as GTEM. Furthermore, a structural analysis was carried out by applying parameter and structural components from other models to a particular model to observe the potential differences in outcomes. Literature review shows that bottom-up or hybrid models generally have higher level of reduction potentials than top-down models in the long run. This contradicts the conclusion presented by IPCC, and raises the need for more rigorous investigation through structural analysis. Structural analysis of EPPA model indicates that the structural component of the energy sector in a particular model is the most influential factor in predicting baseline emissions and reduction potentials. This includes the structure among energy, capital, and labor inputs, and the substitution elasticities within the energy bundle. Technology bundle can establish the conclusions from literature review, and change in Armington elasticities do not significantly affect the outcome in aggregate.

  • PDF

Modified SBEACH Model for Predicting Erosion and Accretion in front of Seadike (수정 SBEACH 모델에 의한 호안 전면의 침퇴적 예측)

  • Han, Jae-Myong;Kim, Kyu-Han;Shin, Sung-Won;Deguchi, Ichiro
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.482-488
    • /
    • 2011
  • Seadike is a coastal structure constructed in the rear region of the foreshore to maximize its usability by preventing direct effect of wave. The expected construction field is determined under the design wave and tidal condition where minor wave overtopping is anticipated. Thus, the location of seadike is generally fixed at the highest site of the surrounding area with seadike crest height controlling the permissible range of wave overtopping volume. But a lot of times, frontal sand beach of the seadike continuously deforms due to incident waves, resulting failure in maintaining its initial slope. The erosion and deposition of the seadike front cause changes in the crest height and volume of wave overtopping and decrease in the setting depth of the seadike, which endangers seadike region as a result. In this study, the relation of local scouring and setting depth of the seadike front in the run-up region is examined by using 2D hydraulic model tests and numerical simulations by modified SBEACH model. As a result, the study learned that if appropriate boundary condition is applied to the modified SBEACH model, it is possible to create practical estimations on the local scouring at the seadike foot when erosive waves flow into the region.

3D numerical modeling of impact wave induced by landslide using a multiphase flow model (다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.943-953
    • /
    • 2021
  • The propagation of impact wave induced by landslide and debris flow occurred on the slope of lake, reservoir and bays is a three-dimensional natural phenomenon associated with strong interaction of debris flow and water flow in complex geometrical environments. We carried out 3D numerical modeling of such impact wave in a bay using a multiphase turbulence flow model and a rheology model for non-Newtonian debris flow. Numerical results are compared with previous experimental result to evaluate the performance of present numerical approach. The results underscore that the reasonable predictions of both thickness and speed of debris flow head penetrating below the water surface are crucial to accurately reproduce the maximum peak height and free surface profiles of impact wave. Two predictions computed using different initial debris flow thicknesses become different from the instant when the peaks of impact waves fall due to the gravity. Numerical modeling using relatively thick initial debris flow thickness appears to well reproduce the water surface profile of impact wave propagating across the bay as well as wave run-up on the opposite slope. The results show that the maximum run-up height on the opposite slope is not sensitive to the initial thickness of debris flows of same total volume. Meanwhile, appropriate rheology model for debris flow consisting of inviscid particle only should be employed to more accurately reproduce the debris flow propagating along the channel bottom.

Estimating the Pollution Delivery Coefficient with Consideration of Characteristics Watershed Form and Pollution Load Washoff (유역형상과 오염부하배출 특성을 고려한 유달계수 산정)

  • Ha, Sung-Ryong;Park, Jung-Ha;Bae, Myung-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.79-87
    • /
    • 2007
  • The performance of a stream water quality analysis model depends upon many factors attributed to the geological characteristics of a watershed as well as the distribution behaviors of pollutant itself on a surface of watershed. Because the model run has to import the pollution load from the watershed as a boundary condition along an interface between a stream water body and a watershed, it has been used to introduce a pollution delivery coefficient to behalf of the boundary condition of load importation. Although a nonlinear regression model (NRM) was developed to cope with the limitation of a conventional empirical way, this an up-to-date study has also a limitation that it can't be applied where the pollution load washed off (assumed at a source) is less than that delivered (observed) in a stream. The objective of this study is to identify what causes the limitation of NRM and to suggest how we can purify the process to evaluate a pollution delivery coefficient using many field observed cases. As a major result, it was found what causes the pollution load delivered to becomes bigger than that assumed at the source. In addition, the pollution load discharged to a stream water body from a specific watershed was calculated more accurately.