• Title/Summary/Keyword: Run-out Error

Search Result 74, Processing Time 0.03 seconds

A Study on the Spindle Run-out Effects on Cutter Mark and Surface Roughness (주축 런아웃이 절삭흔과 표면거칠기에 미치는 영향에 관한 연구)

  • Hwang, Young-Kug;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.84-91
    • /
    • 2007
  • The radial error motion of a machine tool cutter/spindle system is critical to the dimensional accuracy of the parts to be machined. This paper presents an investigation into spindle run-out effects on cutting mark and surface roughness. We experimented the effects of spindle run-out on surface roughness in flat-end milling by cutting AL 7075 workpiece in various cutting conditions. In order to analyze the effects of run-out on the surface roughness, the spindle's radial error motions was measured by mounting a sphere target onto the spindle as a reference. From the experimental results, it was found that spindle un-out makes a directive effects on surface roughness in flat-end milling.

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

Tool-Setup Measurement Technology of High Speed Precision Machining Tool (고속 정밀 가공기의 공구셋업 측정기술)

  • 박경택;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF

A New Empirical Investigation of Employment, Wages and Output -A Comparative Study of the US and Japan-

  • Sung, Jaewhan
    • Journal of Labour Economics
    • /
    • v.21 no.2
    • /
    • pp.17-46
    • /
    • 1998
  • In this paper, I pursue an empirical analysis of different patterns of employment and wage adjustments to demand changes for the US and Japan. Analyzed are the data in the 70's and 80's, the period that the two countries are believed to show most conspicuous diverging patterns. Using the framework of cointegration and error correction, I establish that in the US it is employment level, while in Japan it is wages, that is more responsive to output fluctuations both in the long run and the short run. All the comparisons on the long run relationships are estimated and tested based on the system cointegrating regressions, and the transition from the short run to the long run responses are investigated using impulse response analysis of the error correction models. I also study differences across genders and establishment sizes within each country. For males and females in Japan, the adjustments are significantly different both in the long run and the short run, but for the firms of different sizes they diverge only in the short run. In contrast to some of the earlier work, the gender effect turns out to be insignificant in the US.

  • PDF

Drilled Hole Variation of Air Bearing Spindle for PCB according to RUNOUT (PCB드릴링용 공기베어링 스핀들의 런아웃(RunOut)에 따른 가공 홀의 형상변화)

  • Bae M.I.;Kim S.J.;Kim H.C.;Kim K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1555-1558
    • /
    • 2005
  • In this study, we measured cylindricity and Runout of the air bearing spindle, and tested PCB(printed circuit boards) drilling with 0.4mm micro drill at 90,000rpm and 110,000rpm in order to obtain drilling hole error. Results are as follows; The air bearing spindle's Runout was not so high within $10\mu{m}$ from 20,000rpm to 80,000rpm but it grew after 80,000rpm. Drilling hole size error was 9% at 80,000rpm and 12% at 110,000rpm because of spindle's Run out. Drilled hole shape falsified more 110,000rpm than 90,000rpm.

  • PDF

The Effects of Tool Setting Errors on Cutting Tool Vibrations (공구 진동에 대한 공구 셋팅 오차의 영향)

  • Shin Y.J.;Park K.T.;Kang B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.199-202
    • /
    • 2005
  • High speed milling process is emerging as an important fabrication process benefits include the ability to fabricate micro and meso-scale parts out of a greater range of materials and with more varied geometry. It also enables the creation of micro and meso-scale molds for injection molding. Factors affecting surface roughness have not been studied in depth for this process. A series of experiments has been conducted in order to begin to characterize the factors affecting surface roughness and determine the range of attainable surface roughness values for the high speed milling process. It has previously been shown that run-out creates a greater problem for the dimensional accuracy of parts created by high speed milling process. And run-out also has a more significant effect on the surface quality of milled parts. The surface roughness traces reveal large peak to valley variations. This run-out is generated by spindle dynamics and tool geometry. In order to investigate the relationship between tool setting errors and surface roughness end tilted mills were used to cut aluminum samples. The results indicate that tool setting errors have significant effects on surface roughness and cutting forces.

  • PDF

Theoretical Estimation of Machined Surface Profile by Tool Alignment Errors in Ball-End Milling (볼 엔드밀링에서의 공구 정렬 오차에 의한 가공면의 이론적인 평가)

  • Shin Y.J.;Park K.T.;Lee J.H.;Kang B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.627-628
    • /
    • 2006
  • High speed milling process is emerging as an important fabrication process benefits include the ability to fabricate micro and meso-scale parts out of a greater range of materials and with more varied geometry. It also enables the creation of micro and meso-scale molds for injection molding. Factors affecting surface roughness have not been studied in depth for this process. A series of experiments has been conducted in order to begin to characterize the factors affecting surface roughness and determine the range of attainable surface roughness values for the high speed milling process. It has previously been shown that run-out creates a greater problem for the dimensional accuracy of pans created by high speed milling process. And run-out also has a more significant effect on the surface quality of milled parts. The surface roughness traces reveal large peak to valley variations. This run-out is generated by spindle dynamics and tool geometry. In order to investigate the relationship between tool alignment errors and surface roughness the scallop generating mechanism in the ball-end milling with tool alignement errors has been studied and simulated. The results indicate that tool alignment errors have no significant effects ell the dimension of scallops in for flat planes.

  • PDF

Determination of Unit Hydrograph for the Hydrological Modelling of Long-term Run-off in the Major River Systems in Korea (장기유출의 수문적 모형개발을 위한 주요 수계별 단위도 유도)

  • 엄병현;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.4
    • /
    • pp.52-65
    • /
    • 1984
  • In general precise estimation of hourly of daily distribution of the long-term run-off should be very important in a design of source of irrigation. However, there have not been a satisfying method for forecasting of stationar'y long-term run-off in Korea. Solving this problem, this study introduces unit-hydrograph method frequently used in short-term run-off analysis into the long-term run-off analysis, of which model basin was selected to be Sumgin-river catchment area. In the estimation of effective rainfall, conventional method neglects the Soil moisture condition of catchment area, but in this study, the initial discharge (qb) occurred just before rising phase of the hydrograph was selected as the index of a basin soil moisture condition and then introduced as 3rd variable in the analysis of the reationship between cumulative rainfall and cumulative loss of rainfall, which built a new type of separation method of effective rainfall. In next step, in order to normalize significant potential error included in hydrological data, especially in vast catchment area, Snyder's correlation method was applied. A key to solution in this study is multiple correlation method or multiple regressional analysis, which is primarily based on the method of least squres and which is solved by the form of systems of linear equations. And for verification of the change of characteristics of unit hydrograph according to the variation of a various kind of hydrological charateristics (for example, precipitation, tree cover, soil condition, etc),seasonal unit hydrograph models of dry season(autumn, winter), semi-dry season (spring), rainy season (summer) were made respectively. The results obtained in this study were summarized as follows; 1.During the test period of 1966-1971, effective rainfall was estimated for the total 114 run-off hydrograph. From this estimation results, relative error of estimation to the ovservation value was 6%, -which is mush smaller than 12% of the error of conventional method. 2.During the test period, daily distribution of long-term run-off discharge was estimated by the unit hydrograph model. From this estimation results, relative error of estimation by the application of standard unit hydrograph model was 12%. When estimating by each seasonal unit bydrograph model, the relative error was 14% during dry season 10% during semi-dry season and 7% during rainy season, which is much smaller than 37% of conventional method. Summing up the analysis results obtained above, it is convinced that qb-index method of this study for the estimation of effective rainfall be preciser than any other method developed before. Because even recently no method has been developed for the estimation of daily distribution of long-term run-off dicharge, therefore estimation value by unit hydrograph model was only compared with that due to kaziyama method which estimates monthly run-off discharge. However this method due to this study turns out to have high accuracy. If specially mentioned from the results of this study, there is no need to use each seasonal unit hydrograph model separately except the case of semi-dry season. The author hopes to analyze the latter case in future sudies.

  • PDF

Petroleum Imports and Exchange Rate Volatility (원유수입과 환율변동성)

  • Mo, Soo-Won;Kim, Chang-Beom
    • Environmental and Resource Economics Review
    • /
    • v.11 no.3
    • /
    • pp.397-414
    • /
    • 2002
  • This paper presents an empirical analysis of exchange rate volatility, petroleum's import price and industrial production on petroleum imports. The GARCH framework is used to measure the exchange rate volatility. One of the most appealing features of the GARCH model is that it captures the volatility clustering phenomenon. We found one long-run relationship between petroleum imports, import price, industrial production, and exchange rate volatility using Johansen's multivariate cointegration methodology. Since there exists a cointegrating vector, therefore, we employ an error correction model to examine the short-run dynamic linkage, finding that the exchange rate volatility performs a key role in the short-run. This paper also apply impulse-response functions to provide the dynamic responses of energy consumption to the exchange rate volatility. The results show that the response of energy consumption to exchange rate volatility declines at the first month and dies out very quickly.

  • PDF

A Study on the Measurement of Roundness Profile for Rotating Object Using Two Points in Succession Measuring Method (축차 2점법을 이용한 회전체의 진원도 프로파일 측정에 관한 연구)

  • Lee, Min-Ki;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1029-1034
    • /
    • 2010
  • In this paper, we present the roundness profile and run-out error measurement for a rotating shaft. The devices for measuring the roundness require a precision rotation table which is used as a reference to obtain the circular profile. Therefore, the roundness measuring system is expensive and requires precision manufacturing. The two-point method for succession measurement has been used to obtain a linear profile or used in straightness measurement using two displacement measuring devices. In this paper, the method is used for measuring the circular profile of a rotating shaft. A method to remove the vibration of the shaft, i.e., the run-out, is used, and the original circular profile is obtained from the measured raw data that excludes the run-out error of the rotating shaft. This method will be useful for obtaining the precise circular profile without using a precision reference circular artifact.