• Title/Summary/Keyword: Rump fat

Search Result 16, Processing Time 0.022 seconds

Effects of Size and Rate of Maturing on Carcass Composition of Pasture- or Feedlot- Developed Steers

  • Brown, A.H. Jr.;Camfield, P.K.;Baublits, R.T.;Pohlman, F.W.;Johnson, Z.B.;Brown, C.J.;Tabler, G.T.;Sandelin, B.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.661-671
    • /
    • 2006
  • Steers (n = 335) of known genetic backgrounds from four fundamentally different growth types were subjected to two production systems to study the main effects and possible interactive effects on carcass composition. Growth types were animals with genetic potential for large mature weight (LL), intermediate mature weight-late maturing (IL), intermediate mature weight-early maturing (IE), and small mature weight-early maturing (SE). Each year, in a nine year study, calves of each growth type were weaned and five steers of each growth type were developed on pasture or feedlot and harvested at approximately 20 and 14 mo of age, respectively. Data recorded were chilled carcass weight and percentages of forequarter, foreshank, chuck, rib, plate, brisket, hindquarter, round, rump, shortloin, sirloin, flank, lean, fat, bone, and retail cuts. The growth $type{\times}production$ system interaction was an important source of variation in chilled carcass weight (p = 0.0395) and percentage retail cuts (p = 0.001), lean (p = 0.001), fat (p = 0.001), rump (p = 0.0454), shortloin (p = 0.0487), and flank (p = 0.001). The ranking of the growth $type{\times}production$ system means for percentage lean was LL-pasture>IL-pasture = IE-pasture = SE-pasture>LL-feedlot, IL-feedlot>IE-feedlot = SE-feedlot. The growth $type{\times}production$ system interaction was non-significant (p>0.05) for forequarter, foreshank, chuck, rib, plate, brisket, hindquarter, round and bone. Growth types of IE and SE yielded greater (p<0.05) mean forequarter than did growth types of IL and LL ($51.6{\pm}0.3$ and $51.5{\pm}0.3$ vs. $51.1{\pm}0.3$ and $50.8{\pm}0.3%$). Mean bone was highest (p<0.05) for the LL growth type and lowest (p<0.05) for the SE growth type ($19.5{\pm}0.5$ vs. $16.8{\pm}0.5%$). Mean bone was greater (p<0.05) for the pastured steers than for the feedlot steers ($21.8{\pm}0.8$ vs. $14.5{\pm}0.6%$). These data indicate that growth type responded differently in the two production systems and that these results should be helpful in the match of genetics to production resources.

Genetic Relationship of Productive Life, Production and Type Traits of Korean Holsteins at Early Lactations

  • Wasana, Nidarshani;Cho, GwangHyun;Park, SuBong;Kim, SiDong;Choi, JaeGwan;Park, ByungHo;Park, ChanHyuk;Do, ChangHee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1259-1265
    • /
    • 2015
  • The present study was performed to study the genetic relationship of productive life with production and type traits of Korean Holsteins at first three lactations. The data for the analysis from 56,054, 28,997, and 11,816 animals of first, second and third parity cows which were born from 2006 to 2011 were collected by Dairy Cattle Improvement Center, National Agricultural Co-operative Federation. Milk, protein and fat yields adjusted for 305 days and average somatic cell score considered as production traits and analyzed type traits were stature, strength, body depth, dairy form, rump angle, rump width, rear leg side view, foot angle, front attachment placement, rear attachment height, rear attachment width, udder cleft, udder depth, front teat placement and front teat length. A multi trait genetic analysis was performed using Wombat program with restricted maximum likelihood animal model composed of fixed effect of birth year, farm and the random effect of animal and random residual effect according to the traits. Heritability estimates of productive life were between 0.06 and 0.13. Genetic and phenotypic correlations between production and productive life traits ranged from 0.35 to 0.04 for milk, 0.16 to 0.05 for protein and 0.18 to 0.02 f 15-0034 (2nd) 150520 or fat. Somatic cells score showed a negative genetic and phenotypic correlation with productive life and also udder type traits, indicating that the selection for higher udder traits will likely to improve resistance to mastitis and persistence in the herd. Among all dairy form type traits, udder characters such as udder cleft showed a significant relationship with productive life. However, a specific change of heritabilities or correlations were not observed with the change of parity. Moreover, further studies are needed to further confirm the significance of the above traits and the effect of parity on above relationships in order to minimize both voluntary and involuntary culling rates while improving herd health and maintaining high yielding dairy cows.

Effects of Organic Selenium Mix on the Performance, Carcass Characteristics, Tissue Selenium Distribution, and Economic Value in Finishing Hanwoo Steers (유기셀레늄 혼합제 급여가 비육말기 거세한우의 성장, 도체성적, 체내 셀레늄 분포 및 경제성에 미치는 영향)

  • Kim, D.K.;Jung, D.U.;Sung, H.G.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.975-984
    • /
    • 2005
  • This study fulfilled to investigate the feed efficiency, tissue selenium distribution, carcass characteristic and economic value in finishing Hanwoo steers fed organic selenium mix (OSM) which included seleno-yeast, rumen culture and other microbial supplements. Forty five finishing Hanwoo steers were tested for 4 months dividing to three feeding groups: OSM add as 0.5 ppm Se of DM feeds (0.5 ppm OSM), OSM enriched add as 1.0 ppm Se of DM feeds (1.0 ppm OSM) and basal diet without OSM (control). The total weight gains, the average daily gains and the feed intakes were not differ in treatments (p > 0.05). No differences (p > 0.05) were noted for hot carcass weight, loin eye area, backfat thickness, meat yield index, meat color, fat color, tenderness and maturity. However, the 1.0 ppm OSM showed better performances for feed requirement, TDN per gain, meat yield grade and meat quality grade compared to other groups. Tissue selenium distribution was increased by organic selenium feeding: higher Se concentration in liver and rump of 0.5 ppm OSM (p < 0.05), and kidney, liver, sirloin and rump of 1.0 ppm OSM (p < 0.05) than the tissues of control group. Generally, tissue selenium was the highest value in 1.0 ppm OSM and showed higher concentrate in order; kidney, liver, sirloin and rump. The income over feed cost was 1.06-fold higher in 1.0 ppm OSM than control group. In conclusion, organic selenium mix supplementation and its amounts were not influenced to feed intake, body gain and carcass characteristic but significantly increased tissue selenium. Therefore, these results suggest that finishing Hanwoo steer fed an enriched organic selenium mix with proper probiotics is able to produce “high-Se” beef as high bioavailable form as well as create a beneficial opportunity on Hanwoo farm.

Gene Expression Analysis of Inducible cAMP Early Repressor (ICER) Gene in Longissimus dorsi of High- and Low Marbled Hanwoo Steers (한우 등심부위 근육 내 조지방함량에 따른 inducible cAMP early repressor (ICER) 유전자발현 분석)

  • Lee, Seung-Hwan;Kim, Nam-Kuk;Kim, Sung-Kon;Cho, Yong-Min;Yoon, Du-hak;Oh, Sung-Jong;Im, Seok-Ki;Park, Eung-Woo
    • Journal of Life Science
    • /
    • v.18 no.8
    • /
    • pp.1090-1095
    • /
    • 2008
  • Marbling (intramuscular fat) is an important factor in determining meat quality in Korean beef market. A grain based finishing system for improving marbling leads to inefficient meat production due to an excessive fat production. Identification of intramuscular fat-specific gene might be achieved more targeted meat production through alternative genetic improvement program such as marker assisted selection (MAS). We carried out ddRT-PCR in 12 and 27 month old Hanwoo steers and detected 300 bp PCR product of the inducible cAMP early repressor (ICER) gene, showing highly gene expression in 27 months old. A 1.5 kb sequence was re-sequenced using primer designed base on the Hanwoo EST sequence. We then predicted the open reading frame (ORF) of ICER gene in ORF finder web program. Tissue distribution of ICER gene expression was analysed in eight Hanwoo tissue using realtime PCR analysis. The highest ICER gene expression showed in Small intestine followed by Longissimus dorsi. Interestingly, the ICER gene expressed 2.5 time higher in longissimus dorsi than in same muscle type, Rump. For gene expression analysis in high- and low marbled individuals, we selected 4 and 3 animal based on the muscle crude fat contents (high is 17-32%, low is 6-7% of crude fat contents). The ICER gene expression was analysed using ANOVA model. Marbling (muscle crude fat contents) was affected by ICER gene (P=0.012). Particularly, the ICER gene expression was 4 times higher in high group (n=4) than low group (n=3). Therefore, ICER gene might be a functional candidate gene related to marbling in Hanwoo.

Meat Production Characteristics of Black Bengal Goat

  • Chowdhury, S.A.;Faruque, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.848-856
    • /
    • 2004
  • Black Bengal goat is primarily reared for meat, skin comes here as a by-product. The present trial describes the effect of age on different carcass characteristics of Black Bengal goats of either sex. A total of 61 Black Bengal goats of different age and sex groups were slaughtered. They were reared under semi-intensive management on milk alone or with concentrates (of 10.14 MJ ME and 10.48 g M/kg DM) and freshly cut Napier grass (2 MJ ME and 25 g CP/kg of fresh matter) that provides the estimated NRC (1981) requirement. The four age groups were: pre-weaned kids (0-90 day), post-weaned kids (91-180 days), growing (181-365 days) and adult (>365 days). Goats were slaughtered according to 'Halal' method by severing the major vessels of the throat by a transverse cut. Different slaughter parameters of Black Bengal goat can be best predicted from the equations as follows: live weight (kg)=0.801 (shoulder height (cm))-24.32, ($r^{2}$=0.94); carcass weight (kg)=0.364 (height at hind legs (cm))-11.54, ($r^{2}$=0.91); edible weight (kg)=0.623 (shoulder height (cm))-19.94, ($r^{2}$=0.91) and saleable weight (kg)=0.701 (shoulder height (cm))-21.99, ($r^{2}$=0.92). Live weight, carcass weight, edible weight and saleable weight of castrated goat at one-year onward ranges from 20-22, 9.4-10.5, 14-16 and 16.6-18.8 kg, respectively, which are about 80% higher than most of the reported observations on Black Bengal goat of same age and sex. Slaughter weight, warm carcass weight, edible weight and saleable weight increased curvilinearly with age of slaughter but not affected (p>0.05) by sex. However, linearity of the response curve of affect of age on mentioned parameters ends at around 9 months. Visceral fat as per cent of live weight increased curvilinearly with age and attain its maximum (about 6%) at about 500 days. However, linear part of the quadratic model ends at about 300 days when visceral fat content is about 4.8% of body weight. Blood and skin yield for one-year old male goat was 797 g and 1.61 kg, respectively. Absolute yield of blood and skin increased curvilinealry and attained maximum level at about 400 days (13.3 months). Average proportion of different carcass cut were - round 27%, rump 7%, loin 10%, ribs (6-12th) 14%, shoulder 21%, Neck 7%, chest 14%. Thigh and shoulder constituted about 48.3% of the cold carcass weight. Overall crude protein content of meat samples of different carcass cuts progressively decreased with age starting from 57 at 0-90 days to 58, 47 and 33 per cent, respectively at 91-180, 181-365 and >365 days, respectively. Overall meat fat content increased almost linearly from 11.1% during 91-180 days to 22.9 and 39.5% during 181-365 and >365days, respectively. Results from this trial suggest that both carcass yield and carcass composition changes with age; and sex have little or no effect on carcass yield and carcass composition. However, caution should be made in using second conclusion as there were few female animals slaughtered relative to the male. Optimum slaughter age for Black Bengal goat reared under semi-intensive management with adequate feeding and management would be about 9 months when their live weight, warm carcass weight, edible and saleable weight of carcass can be about 16.74, 7.28, 12.05 and 13.81 kg, respectively.

Studies on the Meat Production and Woolskin Processing of Sheep and Korean Native Goats for Increasing Farm Income as a Family Subsidiary Work (농가부업(農家副業)의 소득향상(所得向上)을 위한 양육생산(羊肉生産) 및 모피가공(毛皮加工)에 관(關)한 연구(硏究))

  • Kwon, Soon-Ki;Kim, Jong-Woo;Han, Sung-Wook;Lee, Kyu Seung
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.2
    • /
    • pp.93-114
    • /
    • 1978
  • The purpose of the study was to find out possible ways for increasing farm income through the sheep and Korean native goats farming, and to investigate meat productivity, wool productivity; woolskin utility, physiological characteristics and correlation between economical college animal farm of the Chungnam National University and sample farms in the suburbs of Dae jeon City were selected for feeding 20 heads of Corriedale wethers and another 20 heads Korean native kids as research materials for the periods of 5th May-26th November, 1977. The data such as growth rate, carcass, viscera weight, blood picture and plamsa components, hebage intake and economic traits were obtained and analysed. The result of the study are summarized as follows: 1. Meat production and quality 1) After 196days of feeding, the body weight of sheep and Korean native goats was increased by two times of those at the beginning of the trial, i.e. 20kg and 8kg respectively. 2) There was no significance of growth rates of sheep in housing and grazing. 3) The growth rate of Korean native goats were excellent at the mountainous areas of Gong ju-Gun where infectious diseases were not found 4) Accroding to the body measurements of 18-month-old sheep, percentages of hip height, body length, rump length, chest depth, chest width, hip width, chest girth and forearm circumference to the withers height were 103,%, 104%, 33%, 44%, 31%, 23%, 135% and 15% respectively, and those of hip height, body length, chest depth and chest girth of 8-month-old native goats to the withers height were 106%, 109%, 46% and 122,% respecitively. As a result, it was found that the percentage of hip height, body length and chest depth of Korean native goats were higher than those of sheep while that of the chest girth of goats was lower. 5) In the carcass data, 47, $52{\pm}2.27%$ of carcass percentage, $34.61{\pm}1.62%$ of lean meat, $26.07{\pm}2.51%$ of viscera, $9.75{\pm}1.4%$ of bone, and $20.95%{\pm}2.14%$ of woolskin for sheep, and $45.58{\pm}5.63%$ of carcass percentage, $27.62{\p}3.81%$ of meat, $34.86{\pm}4.16%$ of viscera, $11.66{\pm}1.83%$ of bone, $3.63{\pm}1.61%$ of skull and $9.26{\pm}2.41%$ of woolskin for native goats were obtained. 6) The contents of moisture, crude protein, crude fat and crude ash in native goat meat were much similar in both plots of housing and grazing. It was, however, known that the contents of moisture and protein were higher in grazinrg than in housing, while fat content was lower in grazing plots. 7) The weights of visceral organs shown similar tendency for both of sheep and native goats. For the weights of liver, heart, kidney and spleen, significance was not reconized among the treatments. Those of rumen, reticulum, small and large intestine were heavier in grazing than in housing, while the amount of visceral fat was heavier in housing. 2. Wool productivity and woolskin 1) The wool production of sheep for 7 months was $3.88{\pm}1.02kg$, and wool percentage, staple length, straighten length, wool growth per day and number of crimps were $9.27{\pm}1.48%$, 8. $47{\pm}1.00cm$, $10.63{\pm}0.99cm$, $0.40{\pm}0.04cm$ and $2.78{\pm}0.40$ respecitively. 2) The tensile strength and tear strength of woolskin treated by alum tanning were highest on the skin obtained from rump, i.e. $1,351kg/mm^2$ and $2,252kg/mm^2$ respectively, and they are in order of loin and shoulder. 3. Utilization and improvement of pasture. 1) The difference of herbage intake of native goats was not recognized between grazing and tethering, but the intake in the afternoon was s lightly higher than that in the morning. However the hervage intake of sheep was superior in grazing and in the afternoon. 2) The cultivation effect was lower in the native goat plots due to their cultivation abilities, in other words, the establishment rates of pasture by hoof cultivation were 60.25% in the goat plots and 77.35% in the sheep plots. 4. Correlation among economical traits. 1) The correlation between live weight of sheep and daily gain was higher. On the other hand, the correlation between other traits was not significant except that live weight, daily gain and lean meat percentage to the length of thoracic vertebrae. The live weight of native goats and meat production were highly correlated, and high correlation was also found between weights of carcass and meat. However, negative correlation was shown between viscera weight and live weight as well as daily gain. 2) The correlatoin between fleece weight of sheep and other traits such as live weight, daily gain and fleece percentage is very high at the 1% siginficant level, and this means that rapid-growth individuals can produce much fleece. 3) The correlation between the factors such as weights of live body, lean meat and viscera of sheep and body measurements, i. e. chest girth and body length was highest, and weights, of carcass and lean meat was highly correlated to chest width and depth. It will be therefore reasonable that the meat productivity estimates will have to be made on the basis of chest girth and body length. The meat production traits of native goats were highly correlated to the most of body measurement data, and the correlation coefficient between chest girth and weights of live body, carcass, lean meat and bone percentage was very high, i. e. 0.992-0.974 in particular. The correlations of meat production traits to chest depth, forearm circumference, body length were 0.759-0.911, 0.759-0.909 and 0.708-0.872 respectively. Therefore, the meat production of native goats will have to be estimated on the basis of chest data. 5. Blood picture and plasma components. 1) The number of erythrocyte and MCHC of native goats were $12.93{\times}10^6/mm^3$ and 36.14%, and those of sheep were $10.68{\times}10^6/mm^3$ and 36.26 respectively. The values of native goats were significantly higher than those of sheep. 2) The hemoglobin concentration, PVC, MCV and MCR of native goats were 10.92 g/100ml, $23.40{\mu}^3$ and 10.94 pg, and those of sheep were 11.73 g/100ml, 36.25 ml/100ml, $33.97{\mu}^3$ and 30.2 ml/100ml 8.43 pg respectively. The values of native goats were significantly lower those of sheep. 3) The number of leukocytes of native goats was significantly higher than that of sheep, that is, $11.64{\times}10^3/mm^3$ in native goats and $9.32{\times}10^3/mm^3$ in sheep. 4) In differential count of leukocyte, neutrophil was significantly high in native goats while lympocyte in sheep. On the other hand, the basophil, eosinophil and monocyte were not significant between native goats and sheep. 5) The amounts of total protein and glucose in the plasma of native goats were 6.2g/100ml and 53.6mg/100ml, and those of sheep were 5.6g/100ml and 45.7mg/100ml, which means that the values of native goats were significantly higher that those of sheep. The amount of total-lipid of native goats(127.6mg/100ml) was significantly than that of sheep(149.6mg/100ml). 6) The amount of non-protein nitrogen, cholesterol, Ca, P, K, Na and Cl were not different between native goats and sheep. 6. Economic analysis. 1) The gross revenue of a farm which fed native goats and sheep was 4,000won per head and the optimum size for feeding them in a farm as a subsidiary work is 5-10 heads. 2) Since there was no difference between housing and grazing, they can be fed in group for farm's subsidiary work. 3) They can be also fed by youths and house wives in the suburbs of cities, because labour requirement is estimated as only two hours per days for feeding 5 heads of native goats and sheep.

  • PDF