• Title/Summary/Keyword: Ruminant

Search Result 348, Processing Time 0.021 seconds

Integrated Tree Crops-ruminants Systems in South East Asia: Advances in Productivity Enhancement and Environmental Sustainability

  • Devendra, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.587-602
    • /
    • 2011
  • Improved efficiency in the use of natural resources, pragmatic production systems and environmental sustainability, justified by the need for improved land use systems and increased productivity, are discussed in the context of Asian integrated systems, diversification, and issues of sustainability. The importance of these are reflected by serious inadequate animal protein production throughout Asia, where available supplies cannot match current and projected human requirements up to 2050. Among the ruminant production systems, integrated tree crops-ruminant production systems are grossly underestimated and merit emphasis and expansion. As an example, integrated oil palm- based system is an important pathway for integration with ruminants (buffaloes, cattle, goats and sheep), and provides the entry point for development. The importance and benefits of integrated systems are discussed, involving animals with annual and perennial tree crops, integration with aquaculture, the significance of crop-animal interactions, stratification of the systems, production options, improved use of forages and legumes, potential for enhanced productivity, implications for improved livelihoods of the rural poor and the stability of farm households. The advances in research and development in South East Asia highlight demonstrable increased productivity from animals and meat offtakes, value addition to the oil palm crop, sustainable development, and distinct economic impacts. The results from 12 out of a total of 24 case studies concerning oil palm over the past three decades showed increased yield of 0.49-3.52 mt of fresh fruit bunches (FFB)/ha/yr; increased income by about 30%; savings in weeding costs by 47- 60% equivalent to 21-62 RM/ha/yr; and an internal rate of return of 19% based on actual field data. The results provide important socio-economic benefits for resource-poor small farmers. Potential increased offtakes and additional income exist with the integration of goats. Additionally, the potential for carbon sequestration with tree crops is an advantage. The reasons for low adoption of the syatems are poor awareness of the potential of integrated systems, resistance by the crop- oriented plantation sector, and inadequate technology application. Promoting wider expansion and adoption of the systems in the future is linked directly with coherent policy, institutional commitment, increased investments, private sector involvement, and a stimulus package of incentives.

EFFECT OF SUPPLEMENTATION AND PARASITIC INFECTION ON PRODUCTIVITY OF THAI NATIVE AND CROSS-BRED FEMALE WEANER GOATS II. BODY COMPOSITION AND SENSORY CHARACTERISTICS

  • Pralomkarn, W.;Intarapichet, K.;Kochapakdee, S.;Choldumrongkul, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.4
    • /
    • pp.555-561
    • /
    • 1994
  • This paper presents results from a study of the body composition and sensory characteristics of female weaner goat meat. A completely randomized $3{\times}3{\times}2$ factorial design was used. Factors were genotype (Thai native; TN, 75% TN $\times$ 25% Anglo-Nubian; AN and 50% TN $\times$ 50% AN), feeding {grazing only, low (1.0% BW/d) and high (1.5% BW/d) concentrate supplementation and parasite control (undrenched and drenched)}. It was shown that there was no effect of genotype on body components and dressing percentage. However, TN and 75% TN $\times$ 25% AN kids had significantly (p<0.05) higher muscle to bone ratios (4.20% and 4.20%, respectively) compared with 50% TN $\times$ 50% AN kids (3.88%). Kids on grazing only had significantly (p<0.01) higher muscle percentage (64.12%) than did kids in low (61.30%) and high (60.62%) supplementary feeding program, but there was no significant (p>0.05) difference between low and high supplementary feeding groups. Kids offered supplementary feeding had significantly (p<0.01) higher percentages of total fat, intermuscular fat, pelvic fat and kidney fat than those of grazing only. Kids offered supplementary feeding had significantly (p<0.05) higher muscle to bone ratios and significantly (p<0.01) higher muscle plus fat to bone ratios compared with those of grazing only. This may be due to significantly lower (p<0.01) bone contents (14.95, 14.17 and 16.8% for kids offered low and high supplementary feeding and grazing only, respectively. There was no significant difference in sensory characteristics of goat meat between genotypes or feeding groups.

Effect of γ-aminobutyric acid producing bacteria on in vitro rumen fermentation, growth performance, and meat quality of Hanwoo steers

  • Mamuad, Lovelia L.;Kim, Seon Ho;Ku, Min Jung;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1087-1095
    • /
    • 2020
  • Objective: The present study aimed to evaluate the effects of γ-aminobutyric acid (GABA)-producing bacteria (GPB) on in vitro rumen fermentation and on the growth performance and meat quality of Hanwoo steers. Methods: The effects of GPB (Lactobacillus brevis YM 3-30)-produced and commercially available GABA were investigated using in vitro rumen fermentation. Using soybean meal as a substrate, either GPB-produced or commercially available GABA were added to the in vitro rumen fermentation bottles, as follows: control, no additive; T1, 2 g/L GPB; T2, 5 g/L GPB; T3, 2 g/L autoclaved GPB; T4, 5 g/L autoclaved GPB; T5, 2 g/L GABA; and T6, 5 g/L GABA. In addition, 27 Hanwoo steers (602.06±10.13 kg) were subjected to a 129-day feeding trial, during which they were fed daily with a commercially available total mixed ration that was supplemented with different amounts of GPB-produced GABA (control, no additive; T1, 2 g/L GPB; T2, 5 g/L GPB). The degree of marbling was assessed using the nine-point beef marbling standard while endotoxin was analyzed using a Chromo-Limulus amebocyte lysate test. Results: In regard to in vitro rumen fermentation, the addition of GPB-produced GABA failed to significantly affect pH or total gas production but did increase the ammonia nitrogen (NH3-N) concentration (p<0.05) and reduce total biogenic amines (p<0.05). Animals fed the GPB-produced GABA diet exhibited significantly lower levels of blood endotoxins than control animals and yielded comparable average daily gain, feed conversion ratio, and beef marbling scores. Conclusion: The addition of GPB improved in vitro fermentation by reducing biogenic amine production and by increasing both antioxidant activity and NH3-N production. Moreover, it also reduced the blood endotoxin levels of Hanwoo steers.

Roles of Conceptus Secretory Proteins in Establishment and Maintenance of Pregnancy in Ruminants

  • Bazer, Fuller W.;Song, Gwon-Hwa;Thatcher, William W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2012
  • Reproduction in ruminant species is a highly complex biological process requiring a dialogue between the developing conceptus (embryo-fetus and associated placental membranes) and maternal uterus which must be established during the peri-implantation period for pregnancy recognition signaling and regulation of gene expression by uterine epithelial and stromal cells. The uterus provide a microenvironment in which molecules secreted by uterine epithelia and transported into the uterine lumen represent histotroph, also known as the secretome, that are required for growth and development of the conceptus and receptivity of the uterus to implantation by the elongating conceptus. Pregnancy recognition signaling as related to sustaining the functional lifespan of the corpora lutea, is required to sustain the functional life-span of corpora lutea for production of progesterone which is essential for uterine functions supportive of implantation and placentation required for successful outcomes of pregnancy. It is within the peri-implantation period that most embryonic deaths occur in ruminants due to deficiencies attributed to uterine functions or failure of the conceptus to develop appropriately, signal pregnancy recognition and/or undergo implantation and placentation. The endocrine status of the pregnant ruminant and her nutritional status are critical for successful establishment and maintenance of pregnancy. The challenge is to understand the complexity of key mechanisms that are characteristic of successful reproduction in humans and animals and to use that knowledge to enhance fertility and reproductive health of ruminant species in livestock enterprises.

Pretreatments of Broussonetia papyrifera: in vitro assessment on gas and methane production, fermentation characteristic, and methanogenic archaea profile

  • Dong, Lifeng;Gao, Yanhua;Jing, Xuelan;Guo, Huiping;Zhang, Hongsen;Lai, Qi;Diao, Qiyu
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1367-1378
    • /
    • 2022
  • Objective: The present study was conducted to examine the gas production, fermentation characteristics, nutrient degradation, and methanogenic community composition of a rumen fluid culture with Broussonetia papyrifera (B. papyrifera) subjected to ensiling or steam explosion (SE) pretreatment. Methods: Fresh B. papyrifera was collected and pretreated by ensiling or SE, which was then fermented with ruminal fluids as ensiled B. papyrifera group, steam-exploded B. papyrifera group, and untreated B. papyrifera group. The gas and methane production, fermentation characteristics, nutrient degradation, and methanogenic community were determined during the fermentation. Results: Cumulative methane production was significantly improved with SE pretreatment compared with ensiled or untreated biomass accompanied with more volatile fatty acids production. After 72 h incubation, SE and ensiling pretreatments decreased the acid detergent fiber contents by 39.4% and 22.9%, and neutral detergent fiber contents by 10.6% and 47.2%, respectively. Changes of methanogenic diversity and abundance of methanogenic archaea corresponded to the variations in fermentation pattern and methane production. Conclusion: Compared with ensiling pretreatment, SE can be a promising technique for the efficient utilization of B. papyrifera, which would contribute to sustainable livestock production systems.

Effect of Soybean Meal and Soluble Starch on Biogenic Amine Production and Microbial Diversity Using In vitro Rumen Fermentation

  • Jeong, Chang-Dae;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Soriano, Alvin P.;Cho, Kwang Keun;Jeon, Che-Ok;Lee, Sung Sil;Lee, Sang-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • This study was conducted to investigate the effect of soybean meal (SM) and soluble starch (SS) on biogenic amine production and microbial diversity using in vitro ruminal fermentation. Treatments comprised of incubation of 2 g of mixture (expressed as 10 parts) containing different ratios of SM to SS as: 0:0, 10:0, 7:3, 5:5, 3:7, or 0:10. In vitro ruminal fermentation parameters were determined at 0, 12, 24, and 48 h of incubation while the biogenic amine and microbial diversity were determined at 48 h of incubation. Treatment with highest proportion of SM had higher (p<0.05) gas production than those with higher proportions of SS. Samples with higher proportion of SS resulted in lower pH than those with higher proportion of SM after 48 h of incubation. The largest change in $NH_3$-N concentration from 0 to 48 h was observed on all SM while the smallest was observed on exclusive SS. Similarly, exclusive SS had the lowest $NH_3$-N concentration among all groups after 24 h of incubation. Increasing methane ($CH_4$) concentrations were observed with time, and $CH_4$ concentrations were higher (p<0.05) with greater proportions of SM than SS. Balanced proportion of SM and SS had the highest (p<0.05) total volatile fatty acid (TVFA) while propionate was found highest in higher proportion of SS. Moreover, biogenic amine (BA) was higher (p<0.05) in samples containing greater proportions of SM. Histamines, amine index and total amines were highest in exclusive SM followed in sequence mixtures with increasing proportion of SS (and lowered proportion of SM) at 48 h of incubation. Nine dominant bands were identified by denaturing gradient gel electrophoresis (DGGE) and their identity ranged from 87% to 100% which were mostly isolated from rumen and feces. Bands R2 (uncultured bacterium clone RB-5E1) and R4 (uncultured rumen bacterium clone L7A_C10) bands were found in samples with higher proportions of SM while R3 (uncultured Firmicutes bacterium clone NI_52), R7 (Selenomonas sp. MCB2), R8 (Selenomonas ruminantium gene) and R9 (Selenomonas ruminantium strain LongY6) were found in samples with higher proportions of SS. Different feed ratios affect rumen fermentation in terms of pH, $NH_3$-N, $CH_4$, BA, volatile fatty acid and other metabolite concentrations and microbial diversity. Balanced protein and carbohydrate ratios are needed for rumen fermentation.

Reductive acetogens isolated from ruminants and their effect on in vitro methane mitigation and milk performance in Holstein cows

  • Kim, Seon-Ho;Mamuad, Lovelia L;Islam, Mahfuzul;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • v.62 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • This study was designed to evaluate the in vitro and in vivo effects of reductive acetogens isolated from ruminants on methane mitigation, and milk performance, respectively. Four acetogens, Proteiniphilum acetatigenes DA02, P. acetatigenes GA01, Alkaliphilus crotonatoxidans GA02, and P. acetatigenes GA03 strains were isolated from ruminants and used in in vitro experiment. A control (without acetogen) and a positive group (with Eubacterium limosum ATCC 8486) were also included in in vitro experiment. Based on higher acetate as well as lower methane producing ability in in vitro trial, P. acetatigenes GA03 was used as inoculum for in vivo experiment. Holstein dairy cows (n = 14) were divided into two groups viz. control (without) and GA03 group (diet supplied with P. acetatigenes GA03 at a feed rate of 1% supplementation). Milk performance and blood parameters were checked for both groups. In in vitro, the total volatile fatty acids and acetate production were higher (p < 0.05) in all 4 isolated acetogens than the control and positive treatment. Also, all acetogens significantly lowered (p < 0.05) methane production in comparison to positive and control groups however, GA03 had the lowest (p < 0.05) methane production among 4 isolates. In in vivo, the rate of milk yield reduction was higher (p < 0.05) in the control than GA03 treated group (5.07 vs 2.4 kg). Similarly, the decrease in milk fat was also higher in control (0.14% vs 0.09%) than treatment. The somatic cell counts (SCC; ×103/mL) was decreased from 128.43 to 107.00 in acetogen treated group however, increased in control from 138.14 to 395.71. In addition, GA03 increased blood glucose and decreased non-esterified fatty acids. Our results suggest that the isolated acetogens have the potential for in vitro methane reduction and P. acetatigenes GA03 strain could be a candidate probiotic strain for improving milk yield and milk fat in lactating cows with lowering SCCs.

Recent Application Technologies of Rumen Microbiome Is the Key to Enhance Feed Fermentation (최근 반추위 미생물 군집의 응용기술을 이용한 사료효율 개선연구)

  • Islam, Mahfuzul;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1244-1253
    • /
    • 2018
  • Rumen microbiome consists of a wide variety of microorganisms, such as bacteria, archaea, protozoa, fungi, and viruses, that are in a symbiotic relationship in a strict anaerobic environment in the rumen. These rumen microbiome, a vital maker, play a significant role in feed fermentation within the rumen and produce different volatile fatty acids (VFAs). VFAs are essential for energy metabolism and protein synthesis of the host animal, even though emission of methane gas after feed fermentation is considered a negative indicator of loss of dietary energy of the host animal. To improve rumen microbial efficiency, a variety of approaches, such as feed formulation, the addition of natural feed additives, dietary feed-microbes, etc., have taken to increase ruminant performance. Recently with the application of high-throughput sequencing or next-generation sequencing technologies, especially for metagenomics and metatranscriptomics of rumen microbiomes, our understanding of rumen microbial diversity and function has significantly increased. The metaproteome and metabolome provide deeper insights into the complicated microbial network of the rumen ecosystem and its response to different ruminant diets to improve efficiency in animal production. This review summarized some recent advances of rumen microbiome techniques, especially "meta-omics," viz. metagenomic, metatranscriptomic, metaproteomic, and metabolomic techniques to increase feed fermentation and utilization in ruminants.

Influence of dietary organic trace minerals on enteric methane emissions and rumen microbiota of heat-stressed dairy steers

  • A-Rang Son;Mahfuzul Islam;Seon-Ho Kim;Sung-Sill Lee;Sang-Suk Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.132-148
    • /
    • 2023
  • Ruminants are the main contributors to methane (CH4), a greenhouse gas emitted by livestock, which leads to global warming. In addition, animals experience heat stress (HS) when exposed to high ambient temperatures. Organic trace minerals are commonly used to prevent the adverse effects of HS in ruminants; however, little is known about the role of these minerals in reducing enteric methane emissions. Hence, this study aimed to investigate the influence of dietary organic trace minerals on rumen fermentation characteristics, enteric methane emissions, and the composition of rumen bacteria and methanogens in heat-stressed dairy steers. Holstein (n=3) and Jersey (n=3) steers were kept separately within a 3×3 Latin square design, and the animals were exposed to HS conditions (Temperature-Humidity Index [THI], 82.79 ± 1.10). For each experiment, the treatments included a Control (Con) consisting of only basal total mixed rations (TMR), National Research Council (NRC) recommended mineral supplementation group (NM; TMR + [Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm]/kg dry matter), and higher concentration of mineral supplementation group (HM; basal TMR + [Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm]/kg dry matter). Higher concentrations of trace mineral supplementation had no influence on methane emissions and rumen bacterial and methanogen communities regardless of breed (p > 0.05). Holstein steers had higher ruminal pH and lower total volatile fatty acid (VFA) concentrations than Jersey steers (p < 0.05). Methane production (g/d) and yield (g/kg dry matter intake) were higher in Jersey steers than in Holstein steers (p < 0.05). The relative abundances of Methanosarcina and Methanobrevibacter olleyae were significantly higher in Holstein steers than in Jersey steers (p < 0.05). Overall, dietary organic trace minerals have no influence on enteric methane emissions in heat-stressed dairy steers; however, breed can influence it through selective alteration of the rumen methanogen community.

Effects of fermentation on protein profile of coffee by-products and its relationship with internal protein structure measured by vibrational spectroscopy

  • Samadi;Xin Feng;Luciana Prates;Siti Wajizah;Zulfahrizal;Agus Arip Munawar;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1190-1198
    • /
    • 2023
  • Objective: To our knowledge, there are few studies on the correlation between internal structure of fermented products and nutrient delivery from by-products from coffee processing in the ruminant system. The objective of this project was to use advanced mid-infrared vibrational spectroscopic technique (ATR-FT/IR) to reveal interactive correlation between protein internal structure and ruminant-relevant protein and energy metabolic profiles of by-products from coffee processing affected by added-microorganism fermentation duration. Methods: The by-products from coffee processing were fermented using commercial fermentation product, called Saus Burger Pakan, consisting of various microorganisms: cellulolytic, lactic acid, amylolytic, proteolytic, and xylanolytic microbes, for 0, 7, 14, 21, and 28 days. Protein chemical profiles, Cornell Net Carbohydrate and Protein System crude protein and CHO subfractions, and ruminal degradation and intestinal digestion of protein were evaluated. The attenuated total reflectance-Ft/IR (ATR-FTIR) spectroscopy was used to study protein structural features of spectra that were affected by added microorganism fermentation duration. The molecular spectral analyses were carried using OMNIC software. Molecular spectral analysis parameters in fermented and non-fermented by-products from coffee processing included: Amide I area (AIA), Amide II (AIIA) area, Amide I heigh (AIH), Amide II height (AIIH), α-helix height (αH), β-sheet height (βH), AIA to AIIA ratio, AIH to AIIH ratio, and αH to βH ratio. The relationship between protein structure spectral profiles of by-products from coffee processing and protein related metabolic features in ruminant were also investigated. Results: Fermentation decreased rumen degradable protein and increased rumen undegradable protein of by-products from coffee processing (p<0.05), indicating more protein entering from rumen to the small intestine for animal use. The fermentation duration significantly impacted (p<0.05) protein structure spectral features. Fermentation tended to increase (p<0.10) AIA and AIH as well as β-sheet height which all are significantly related to the protein level. Conclusion: Protein structure spectral profiles of by-product form coffee processing could be utilized as potential evaluators to estimate protein related chemical profile and protein metabolic characteristics in ruminant system.