• 제목/요약/키워드: Ruminal Characteristics

검색결과 208건 처리시간 0.023초

The role of rumen microbiota in enteric methane mitigation for sustainable ruminant production

  • Takumi Shinkai;Shuhei Takizawa;Miho Fujimori;Makoto Mitsumori
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.360-369
    • /
    • 2024
  • Ruminal methane production functions as the main sink for metabolic hydrogen generated through rumen fermentation and is recognized as a considerable source of greenhouse gas emissions. Methane production is a complex trait affected by dry matter intake, feed composition, rumen microbiota and their fermentation, lactation stage, host genetics, and environmental factors. Various mitigation approaches have been proposed. Because individual ruminants exhibit different methane conversion efficiencies, the microbial characteristics of low-methane-emitting animals can be essential for successful rumen manipulation and environment-friendly methane mitigation. Several bacterial species, including Sharpea, uncharacterized Succinivibrionaceae, and certain Prevotella phylotypes have been listed as key players in low-methane-emitting sheep and cows. The functional characteristics of the unclassified bacteria remain unclear, as they are yet to be cultured. Here, we review ruminal methane production and mitigation strategies, focusing on rumen fermentation and the functional role of rumen microbiota, and describe the phylogenetic and physiological characteristics of a novel Prevotella species recently isolated from low methane-emitting and high propionate-producing cows. This review may help to provide a better understanding of the ruminal digestion process and rumen function to identify holistic and environmentally friendly methane mitigation approaches for sustainable ruminant production.

Effects of Moisture and a Saponin-based Surfactant during Barley Processing on Growth Performance and Carcass Quality of Feedlot Steers and on In vitro Ruminal Fermentation

  • Wang, Y.;Gibb, D.;Greer, D.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권12호
    • /
    • pp.1690-1698
    • /
    • 2011
  • Feedlot and in vitro ruminal experiments were conducted to assess the effects of saponin-containing surfactant applied during tempering of barley grain on cattle growth performance and on ruminal fermentation. In the feedlot experiment, treatments with three barley grain/barley silage based diets were prepared using barley grain at 7.7% moisture (dry, D), after tempering to 18% moisture (M), or after tempering with a saponin-based surfactant included at 60 ml/t (MS). Each treatment was rolled at settings determined previously to yield optimally processed barley. A total of 180 newly weaned British${\times}$Charolais steers were fed three diets in 18 pens for a 63-d backgrounding period and 91-d finishing period to determine feed intake, growth rate and feed efficiency. Cattle were slaughtered at the end of the experiment to measure the carcass characteristics. Tempering reduced (p<0.001) volume weight and processing index, but processing characteristics were similar between MS and M. Tempering increased (p<0.05) growth during backgrounding only, compared with D, but did not affect feed intake in either phase. During backgrounding, feed efficiency was improved with tempering, but during finishing and overall this response was only observed with the surfactant. Tempering did not affect carcass weight, fat content or meat yield. Surfactant doubled the proportion of carcasses grading AAA. In the in vitro experiment, barley (500 mg; ground to <1.0 mm or steam-rolled) was incubated in buffered ruminal fluid (40 ml) without or with surfactant up to 20 ${\mu}l/g$ DM substrate for 24 h. Surfactant increased (p<0.05) apparent DM disappearance and starch digestibility but reduced productions of gas and the volatile fatty acid and acetate:propionate ratio, irrespective of barley particle size. Compared with feeding diets prepared with non-tempered barley, tempering with surfactant increased the feed efficiency of feedlot steers. This may have arisen from alteration in processing characteristics of barley grain by surfactant rather than its direct effect on rumen microbial fermentation.

EFFECT OF SUPPLEMENTING RUMEN-PROTECTED LYSINE AND METHIONINE ON RUMINAL CHARACTERISTICS AND NUTRIENT DIGESTIBILITY IN SHEEP

  • Han, In K.;Ha, J.K.;Lee, S.S.;Ko, Y.G.;Lee, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제9권2호
    • /
    • pp.223-229
    • /
    • 1996
  • This experiment was conducted to investigate the protein sparing effect of rumen protected lysine(RPLys) and methionine hydroxyl analogue(MHA) in sheep. The treatments were $T_1$ (CP 15% + RPLys 0%), $T_2$ (CP 12% + RPLys 0%), $T_3$ (CP 12% + RPLys 0.4%) and $T_4$ (CP 12% + RPLys 0.4% + MHA 0.3%). Ruminal characteristics, in situ and in vitro digestibility and nitrogen retention rate were measured in sheep receiving different combinations of dietary supplement. The results are summarized as follows: 1. Ruminal pH and VFA concentrations were not affected by the treatments. Ruminal ammonia-N concentration was high in sheep fed diets $T_2$, $T_3$ and $T_4$ with the highest value in the $T_4$ treatment(p<0.05). 2. The digestibilities of dry matter and organic matter were not affected by the treatments. 3. Nitrogen losses through feces and urine were the highest with $T_1$ (p<0.05) and nitrogen retention rates of groups $T_1$, $T_2$, $T_3$ and $T_4$ were 18.6, 32.4, 35.5 and 27.5% of nitrogen intake, respectively, indicating that RPLys supplementation improved nitrogen retention in sheep.

잣나무 생지엽(生枝葉) 사일리지 급여가 거세한우의 반추위 발효성상 및 스트레스 관련 Hormone의 혈 중 농도에 미치는 영향 (Effects of Pine Silage Feeding on Ruminal Fermentation Characteristics, and Blood Concentrations of Stress-Related Hormones in HANWOO Steers)

  • 이상철;정찬성;오영균;김경훈;조성백;김태규;이성실;문여황
    • Journal of Animal Science and Technology
    • /
    • 제47권2호
    • /
    • pp.253-260
    • /
    • 2005
  • This study was conducted to utilize the wastes produced from thinning the forest as a roughage source for ruminants. Four ruminally cannulated Korean steers were used to investigate the ruminal fermentation characteristics and blood concentrations of stress-related hormones. Treatments were composed of the rice straw only (Control) and the 30% pine silage plus 70% rice straw(Pine silage) as roughages. The experiment was conducted with four replicates by a double tum over design. For sampling of blood under high temperature steers were accommodated in respiratory chamber. Concentrations of ruminal pH, volatile fatty acids and ammonia were not affected by substitution of pine silage. Mean concentration of blood thyroxine was significantly(P < 0.01) lower in the pine silage than the control. However, blood cortisol concentration was not affected by substitution of pine silage, even though it was significantly(P < 0.05) decreased after exposure for 6 hrs in high temperature. It was concluded that the pine silage using the wastes produced from thinning the forest could be use as a substitute roughage for reduction of heat stress in ruminant.

Effect of Supplemental Corn Dried Distillers Grains with Solubles Fed to Beef Steers Grazing Native Rangeland during the Forage Dormant Season

  • Murillo, M.;Herrera, E.;Ruiz, O.;Reyes, O.;Carrete, F.O.;Gutierrez, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권5호
    • /
    • pp.666-673
    • /
    • 2016
  • Two experiments were conducted to evaluate the effects of the level of corn dry distillers grains with solubles (CDDGS) supplementation on growing performance, blood metabolites, digestion characteristics and ruminal fermentation patterns in steers grazing dormant forage. In Exp. 1, of growth performance, 120 steers ($204{\pm}5kg$ initial body weight [BW]) were distributed randomly into 3 groups (each of 40 steers), which were provided with the following levels of CDDGS supplement: 0%, 0.25%, or 0.50% BW. All groups of steers were grazed for 30 days in each of 3 grazing periods (March, April, and May). Approximately 1,000 ha of the land was divided with electric fencing into 3 equally sized pastures (333 ha in size). Blood samples were collected monthly from 20 steers in each grazing group for analysis of glucose (G), urea-nitrogen (UN) and non-esterified fatty acids. Final BW, average daily gain (ADG) and supplement conversion (CDDGS-C) increased with increasing levels of CDDGS supplementation (p<0.05).The CDDGS supplementation also increased the plasma G and UN concentrations (p<0.05). In Exp. 2, of digestive metabolism, 9 ruminally cannulated steers ($BW=350{\pm}3kg$) were distributed, following a completely randomized design, into groups of three in each pasture. The ruminally cannulated steers were provided the same levels of CDDGS supplementation as in the growing performance study (0%, 0.25%, and 0.50% BW), and they grazed along with the other 40 steers throughout the grazing periods. The dry matter intake, crude protein intake, neutral detergent fiber intake (NDFI), apparent digestibility of dry matter (ADDM), crude protein (ADCP) and neutral detergent fiber (ADNDF) increased with increasing levels of CDDGS supplementation (p<0.05). The ruminal degradation rates of CP (kdCP), NDF (kdNDF) and passage rate (kp) also increased with increasing levels of CDDGS supplementation (p<0.05). Ruminal ammonia nitrogen ($NH_3$-N) and propionate concentrations also increased with increasing levels of CDDGS supplementation (p<0.05). However, acetate concentrations decreased with increasing levels of CDDGS supplementation (p<0.05). Liquid dilution rate increased with increasing levels of CDDGS supplementation but ruminal liquid volume decreased (p<0.05). On the basis of these findings, we can conclude that CDDGS supplementation enhanced the productive performance of cattle grazing native rangeland without negatively affecting forage intake, glucose and urea-nitrogen blood concentrations, ruminal degradation and ruminal fermentation patterns.

Urea Treated Corncobs Ensiled with or without Additives for Buffaloes: Ruminal Characteristics, Digestibility and Nitrogen Metabolism

  • Khan, M.A.;Iqbal, Z.;Sarwar, M.;Nisa, M.;Khan, M.S.;Lee, W.S.;Lee, H.J.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권5호
    • /
    • pp.705-712
    • /
    • 2006
  • Influences of urea treated corncobs (UTC) ensiled with or without different additives on ruminal characteristics, in situ digestion kinetics, nutrient digestibility and nitrogen metabolism were examined in a $5{\times}5$ Latin square design using five ruminally cannulated buffalo bulls. Five iso-caloric and iso-nitrogenous diets were formulated to contain 30% dry matter (DM) from concentrate and 70% DM from 5% UTC ensiled without any additive (U) or with 5% enzose (EN), 5% acidified molasses (AM), 5% non-acidified molasses (NM) and 5% acidified water (AW), respectively. These diets were fed to buffalo bulls at 1.5% of their body weight daily. Ruminal $NH_3$-N concentration at 3 hours (h) post feeding was significantly higher in bulls fed U, NM and AW diets, however, at 6, 9 and 12 h post feeding it was significantly higher in bulls fed EN and AM diets. Ruminal total volatile fatty acids (VFA) and acetate concentrations were significantly higher with EM and AM diets compared with other diets at 3, 6, 9 and 12 h post feeding. Ruminal pH at 6 and 9 h post feeding was higher with EN and AM diets; however; it was notably lower with these diets at 3 h post feeding. Total ruminal bacterial and cellulolytic bacterial counts were higher in bulls fed EN and AM diets than in those fed the other diets. In situ ruminal DM and NDF degradabilities and total tract digestibilities were significantly higher with UTC ensiled with enzose and acidified molasses than those ensiled without any additive or other additives. Nitrogen balance was significantly higher in bulls fed EN and AM diets than those fed U, AW and NM diets. The UTC ensiled with enzose or acidified molasses resulted in better digestibility and N utilization than those ensiled without any additive, with non-acidified molasses and acidified water in buffaloes.

Effects of Non-ionic Surfactants on Enzyme Distributions of Rumen Contents, Anaerobic Growth of Rumen Microbes, Rumen Fermentation Characteristics and Performances of Lactating Cows

  • Lee, S.S.;Ahn, B.H.;Kim, H.S.;Kim, C.H.;Cheng, K.-J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권1호
    • /
    • pp.104-115
    • /
    • 2003
  • A series of experiments was carried out to determine the possibility for the non-ionic surfactant (NIS) as a feed additive for ruminant animals. The effect of the NIS on (1) the enzyme distribution in the rumen fluids of Hereford bulls, (2) the growth of pure culture of rumen bacteria and (3) rumen anaerobic fungi, (4) the ruminal fermentation characteristics of Korean native cattle (Hanwoo), and (5) the performances of Holstein dairy cows were investigated. When NIS was added to rumen fluid at the level of 0.05 and 0.1% (v/v), the total and specific activities of cell-free enzymes were significantly (p<0.01) increased, but those of cell-bound enzymes were slightly decreased, but not statistically significant. The growth rates of ruminal noncellulolytic species (Ruminobacter amylophilus, Megasphaera elsdenii, Prevotella ruminicola and Selenomonas ruminantium) were significantly (p<0.01) increased by the addition of NIS at both concentrations tested. However, the growth rate of ruminal cellulolytic bacteria (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and Butyrivibrio fibrisolvens) were slightly increased or not affected by the NIS. In general, NIS appears to effect Gram-negative bacteria more than Gram-positive bacteria; and non-cellulolytic bacteria more than cellulolytic bacteria. The growth rates of ruminal monocentric fungi (Neocallimastix patriciarum and Piromyces communis) and polycentric fungi (Orpinomyces joyonii and Anaeromyces mucronatus) were also significantly (p<0.01) increased by the addition of NIS at all concentrations tested. When NIS was administrated to the rumen of Hanwoo, Total VFA and ammonia-N concentrations, the microbial cell growth rate, CMCase and xylanase activities in the rumen increased with statistical difference (p<0.01), but NIS administration did not affect at the time of 0 and 9 h post-feeding. Addition of NIS to TMR resulted in increased TMR intake and increased milk production by Holstein cows and decreased body condition scores. The NEFA and corticoid concentrations in the blood were lowered by the addition of NIS. These results indicated that the addition of NIS may greatly stimulate the release of some kinds of enzymes from microbial cells, and stimulate the growth rates of a range of anaerobic ruminal microorganisms, and also stimulate the rumen fermentation characteristics and animal performances. Our data indicates potential uses of the NIS as a feed additive for ruminant animals.

활성탄 및 목탄의 첨가가 산양의 영양소 이용율 및 반추위내 발효성상에 미치는 영향 (Effects of Activated Carbon and Charcoal on the Nutrients Utilization and Ruminal Fermentation Characteristics in Goat)

  • 차상우;이수기
    • 농업과학연구
    • /
    • 제32권2호
    • /
    • pp.197-203
    • /
    • 2005
  • 본 시험은 활성탄 및 목탄의 첨가가 사료의 소화율, 반추위내 pH 발효성상에 미치는 영향을 조사하기 위하여 실시하였다. 한국재래산양에 대한 급여 실험을 실시하였는데, 활성탄과 목탄의 첨가수준은 1.0% 수준이었으며, 조사료/농후사료 비율은 오차드그래스 건초와 농후사료를 2:8로 하였다. 시험에 공시된 동물은 대사케이지에 수용하여 매일 09시에 사료를 급여하였다. 시험 결과를 요약하면 건물 소화율은 활성탄 및 목탄 첨가구가 무첨가구에 비하여 유의한 결과는 아니었지만 높은 경향을 보였다. 그리고 단백질의 소화율은 활성탄 및 목탄 첨가구가 무첨가구에 비하여 유의하게 높은 결과(p<0.05)를 나타내었다. 그러나 조지방, NDF, ADF 및 hemicellulose의 소화율은 유의한 증가를 나타내지 않았다. 활성탄구와 목탄구 사이에도 유의한 차이를 나타내지 않았다. pH와 반추위내 암모니아의 농도는 활성탄구와 목탄구가 무첨가구보다 다소 높은 경향을 보였으며, 총VFA 농도는 무첨가구에서 유의하게 높게 나타났다. 그리고 $C_2/C_3$ 비율을 보면 활성탄구는 무처리구에 비하여 유의하게 낮은 결과(p<0.05)를 나타내었고, 목탄구도 무처리구보다는 낮은 결과였으나 유의성은 인정되지 않았다. 위 결과에서 보듯이 활성탄은 가축의 생산성 향상에 유리한 조건을 제공하는 경향이 있다고 보여진다. 그러나 이미 보고된 바와 같이 시험 조건에 따라 상반되는 결과를 보이기도 한다. 이것이 외부 환경요인이 사료처리 영향을 압도하는 것인지, 또는 어느 제한된 조건하에서만 활성탄의 영향이 발현되는가에 대하여 추가연구가 요구된다고 하겠다. 그리고 여기에 대한 경제성 여부도 검토되어져야 할 것으로 사료된다.

  • PDF

Ruminal pH pattern, fermentation characteristics and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle

  • Zhang, Xiangfei;Dong, Xianwen;Wanapat, Metha;Shah, Ali Mujtaba;Luo, Xiaolin;Peng, Quanhui;Kang, Kun;Hu, Rui;Guan, Jiuqiang;Wang, Zhisheng
    • Animal Bioscience
    • /
    • 제35권2호
    • /
    • pp.184-195
    • /
    • 2022
  • Objective: In this study we aimed to evaluate the effect of dietary live yeast supplementation on ruminal pH pattern, fermentation characteristics and associated bacteria in beef cattle. Methods: This work comprised of in vitro and in vivo experiments. In vitro fermentation was conducted by incubating 0%, 0.05%, 0.075%, 0.1%, 0.125%, and 0.15% active dried yeast (Saccharomyces cerevisiae, ADY) with total mixed ration substrate to determine its dose effect. According to in vitro results, 0.1% ADY inclusion level was assigned in in vivo study for continuously monitoring ruminal fermentation characteristics and microbes. Six ruminally cannulated steers were randomly assigned to 2 treatments (Control and ADY supplementation) as two-period crossover design (30-day). Blood samples were harvested before-feeding and rumen fluid was sampled at 0, 3, 6, 9, and 12 h post-feeding on 30 d. Results: After 24 h in vitro fermentation, pH and gas production were increased at 0.1% ADY where ammonia nitrogen and microbial crude protein also displayed lowest and peak values, respectively. Acetate, butyrate and total volatile fatty acids concentrations heightened with increasing ADY doses and plateaued at high levels, while acetate to propionate ratio was decreased accordingly. In in vivo study, ruminal pH was increased with ADY supplementation that also elevated acetate and propionate. Conversely, ADY reduced lactate level by dampening Streptococcus bovis and inducing greater Selenomonas ruminantium and Megasphaera elsdenii populations involved in lactate utilization. The serum urea nitrogen decreased, whereas glucose, albumin and total protein concentrations were increased with ADY supplementation. Conclusion: The results demonstrated dietary ADY improved ruminal fermentation dose-dependently. The ruminal lactate reduction through modification of lactate metabolic bacteria could be an important reason for rumen pH stabilization induced by ADY. ADY supplementation offered a complementary probiotics strategy in improving gluconeogenesis and nitrogen metabolism of beef cattle, potentially resulted from optimized rumen pH and fermentation.

Silage Fermentative Quality and Characteristics of Anthocyanin Stability in Anthocyanin-rich Corn (Zea mays L.)

  • Hosoda, Kenji;Eruden, Bayaru;Matsuyama, Hiroki;Shioya, Shigeru
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권4호
    • /
    • pp.528-533
    • /
    • 2009
  • The fermentative quality and quantitative change in anthocyanin of anthocyanin-rich corn (Zea mays L.) during storage and in vitro ruminal fermentation were studied. The anthocyanin-rich corn silages in bag silo, drum silo and round bale had good fermentative qualities, such as low pH (5% DM) and butyric acid-free, and its quality was maintained for more than 370 d. The amount of anthocyanin in the anthocyanin-rich corn decreased after ensiling by about 45% (from 3.34 to 1.88 mg/g DM), but stayed constant after day 60. The in vitro incubation of the anthocyanin-rich corn with ruminal fluid revealed little degradation of anthocyanin. These results indicate that the anthocyanin had no negative effect on silage fermentation, and the anthocyanin-rich corn silage is utilizable for practical use as a feedstuff. Our results also demonstrate alteration of the anthocyanin content during storage, and show that anthocyanin-rich corn is a suitable antioxidant source for ruminants because of the high stability of the anthocyanin in ruminal fluid.