• Title/Summary/Keyword: Rumen undegradable protein

Search Result 36, Processing Time 0.026 seconds

Effects on the Rumen Microbial Fermentation Characteristics of Lignosulfonate Treated Soybean Meal (Lignosulfonate처리 대두박의 반추위 내 미생물 발효특성에 미치는 영향)

  • Lee, Hun-Jong;Lee, Seung-Heon;Bae, Gui-Seck;Park, Je-Hwan;Chang, Moon-Baek
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.413-426
    • /
    • 2010
  • This study was conducted to investigate the effects on fermentation characteristics of rumen microorganism by different types and levels of lignosulfonate treated soybean meal (LSBM) in in vitro test and rumen simulation continuous culture (RSCC) system in dairy cows. The experiment I was control and 12 treatments (each with 3 replications) in vitro test to demonstrate composition of different types of treatments with lignosulfonate (Desulfonate, Na, Ca and solution) and levels (2, 4 and 8%) of soybean meal in the dairy cow diet. LSBM source treatments in the dairy cow diet showed pH value, $NH_3$-N concentration and total VFA concentration lower than control at all levels and incubation times (p<0.05). Dry matter digestibility of LSBM source treatments showed lower than control (p<0.05). Gas production and rumen microbial synthesis was decreased by rumen microbial fermentation for incubation times. Undegradable protein (UDP) concentration of all LSBM treatments was decreased for incubation times, and significantly higher than control (p<0.05). In the experiment II compared diets of the control, LSBM Na 2%, LSBM Sol 2%, which are high performance to undegradable protein (UDP) concentration experiment I in vitro test, and heated treatment lignosulfonate (LSBM Heat) 2% in the dairy cow diet from four station RSCC system ($4{\times}4$ Latin square). A rumen microbial fermentation characteristic was stability during 12~15 days of experimental period in all treatments. The pH value of LSBM treatments was higher than control treatment (p<0.05). The $NH_3$-N concentration, VFA concentration and rumen microbial synthesis of LSBM treatments were lower than control (p<0.05). The undegradable protein (UDP) showed LSBM Na 2% (45.28%), LSBM Sol 2% (43.52%) and LSBM Heat 2% (43.49%) higher than control (41.55%), respectively (p<0.05). Those experiments were designed to improve by-pass protein of diet and milk protein in the dairy cows. We will conduct those experiments the in vivo test by LSBM treatments in dairy cows diet.

Influence of Corn Processing and Rumen Undegradable Protein Levels on Performance of Holstein Cows during the Transitional Period (옥수수 가공형태와 RUP 수준이 전환기 젖소의 생산성에 미치는 영향)

  • Kim, H.S.;Lee, J.S.;Kim, Y.G.;Lee, W.S.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1001-1008
    • /
    • 2005
  • This study examined the effect of corn processing with varying rumen undegradable protein (RUP) on feed intake, milk yield, its composition and, blood characteristics in Holstein cows during the transitional period (21 days pre partum to 21 days post partum). Twenty Holstein cows were randomly assigned to four diets (five cows/diet), ground corn with 30 % RUP (GCR30), ground corn with 40 % RUP (GCR40), flaked corn with 30 % RUP (FCR30), and flaked corn with 40 % RUP (FCR40). The processed corn with varying RUP was fed in total mixed rations (TMR) to cows. Dry matter intake (DMI) was higher with 40 % RUP diet than with 30 % RUP diet, resulting in higher protein and energy intake by cows during pre and post partum (p<0.05). However, it was not affected by corn processing during pre and post partum. Similarly milk yield was higher with 40 % RUP diet than with 30 % RUP diet. and milk yield was affected by corn processing at RUP 30 % level. Corn processing did not affected the milk fat and protein contents in dairy cows. The concentration of blood non esterified fatty acid (NEFA) were effected by RUP level with flaked corn, however, it was non-significant with RUP levels when given with ground corn. It is concluded that increasing RUP from 30 % to 40 % in iso-nitrogenous diet could increase milk yield in dairy cows during the transitional phase.

In situ ruminal degradation characteristics of dry matter and crude protein from dried corn, high-protein corn, and wheat distillers grains

  • Lee, Y.H.;Ahmadi, F.;Choi, D.Y.;Kwak, W.S.
    • Journal of Animal Science and Technology
    • /
    • v.58 no.9
    • /
    • pp.33.1-33.7
    • /
    • 2016
  • Background: The continuing growth of the ethanol industry has generated large amounts of various distillers grains co-products. These are characterized by a wide variation in chemical composition and ruminal degradability. Therefore, their precise formulation in the ruminant diet requires the systematic evaluation of their degradation profiles in the rumen. Methods: Three distillers grains plus soluble co-products (DDGS) namely, corn DDGS, high-protein corn DDGS (HP-DDGS), and wheat DDGS, were subjected to an in situ trial to determine the degradation kinetics of the dry matter (DM) and crude protein (CP). Soybean meal (SBM), a feed with highly degradable protein in the rumen, was included as the fourth feed. The four feeds were incubated in duplicate at each time point in the rumen of three ruminally cannulated Hanwoo cattle for 1, 2, 4, 6, 8, 12, 24, and 48 h. Results: Wheat DDGS had the highest filterable and soluble A fraction of its DM (37.2 %), but the lowest degradable B (49.5 %; P < 0.001) and an undegradable C fraction (13.3 %; P < 0.001). The filterable and soluble A fraction of CP was greatest with wheat DDGS, intermediate with corn DDGS, and lowest with HP-DDGS and SBM; however, the undegradable C fraction of CP was the greatest with HP-DDGS (41.2 %), intermediate with corn DDGS (2.7 %), and lowest with wheat DDGS and SMB (average 4.3 %). The degradation rate of degradable B fraction ($%\;h^{-1}$) was ranked from highest to lowest as follows for 1) DM: SBM (13.3), wheat DDGS (9.1), and corn DDGS and HP-DDGS (average 5.2); 2) CP: SBM (17.6), wheat DDGS (11.6), and corn DDGS and HP-DDGS (average 4.4). The in situ effective degradability of CP, assuming a passage rate of $0.06h^{-1}$, was the highest (P < 0.001) for SBM (73.9 %) and wheat DDGS (71.2 %), intermediate for corn DDGS (42.5 %), and the lowest for HP-DDGS (28.6 %), which suggests that corn DDGS and HP-DDGS are a good source of undegraded intake protein for ruminants. Conclusions: This study provided a comparative estimate of ruminal DM and CP degradation characteristics for three DDGS co-products and SBM, which might be useful for their inclusion in the diet according to the ruminally undegraded to degraded intake protein ratio.

Influence of flaxseed with rumen undegradable protein level on milk yield, milk fatty acids and blood metabolites in transition ewes

  • Ababakri, Rahmat;Dayani, Omid;Khezri, Amin;Naserian, Abbas-Ali
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.475-490
    • /
    • 2021
  • An experiment was conducted to determine the effects of two levels of rumen undegradable protein (RUP) without or with whole or extruded flaxseed on milk yield, milk component, milk fatty acids (FAs) profile and plasma metabolites in transition ewes. Three weeks before and after lambing, seventy-two Baluchi ewes were used in a completely randomized design with a 3 × 2 factorial arrangement of treatments. The treatments contained 1) no flaxseed + 20% RUP (no flaxseed, low RUP [NFLR]); 2) no flaxseed + 40% RUP (no flaxseed, high RUP [NFHR]); 3) 10% whole flaxseed + 20% RUP (whole flaxseed, low RUP [WFLR]); 4) 10% whole flaxseed + 40% RUP (whole flaxseed, high RUP [WFHR]); 5) 10% extruded flaxseed + 20% RUP (extruded flaxseed, low RUP [EFLR]), and 6) 10% extruded flaxseed + 40% RUP (extruded flaxseed, high RUP [EFHR]). Ewes fed 10% extruded flaxseed exhibited higher (p < 0.001) dry matter intake (DMI) and colostrum yield (p < 0.1) compared to other treatments. Two types of flaxseed and RUP levels had no significant effect on milk yield, but milk fat and protein contents decreased and increased in diets containing 40% RUP, respectively. Ewes fed extruded flaxseed produced milk with lower concentrations of saturated fatty acids (SFA) and higher α-linolenic and linoleic acids and also polyunsaturated fatty acids (PUFA) compared to other groups (p < 0.05). During post-lambing, the ewes fed diets containing flaxseed exhibited higher concentration of serum non-esterified FAs (NEFA) compared to diets without flaxseed (p < 0.01). The concentration of serum β-hydroxybutyric acid (BHBA) decreased in the diets containing flaxseed types at pre-lambing, but increased in diets containing extruded flaxseed at post-lambing (p < 0.01). The serum glucose concentration of ewes (pre and post-lambing) which consumed diets containing extruded flaxseed or 40% RUP increased, but blood urea concentration was elevated following supplementation of diet with whole flaxseed or 40% RUP (p < 0.001). In conclusion, utilization of 10% extruded flaxseed in the diets of transition ewes had positive effects on animal performance with favorable changes in milk FAs profile. However, there is no considerable advantage to supply more than 20% RUP level in the diet of transition dairy sheep.

Determination of Optimal Conditions of Pressure Toasting on Legume Seeds for Dairy Deed Industry : I. Effects of Pressure Toasting on Nutritive Values of Lupinus albus in Lactating Dairy Cows

  • Yu, P.;Goelema, J.O.;Tamminga, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1205-1214
    • /
    • 1999
  • Whole lupinus albus seeds were pressure toasted at temperatures of 100, 118 and $136^{\circ}C$ for 3, 7, 15 and 30 min to study rumen degradation and post-rumen digestion and to determine optimal heating conditions for the Dutch dairy feed industry. In sacco nylon bag and mobile bag techniques were employed for rumen and intestine incubations to determine ruminal degradation characteristics and intestinal digestion of crude protein (CP) in 4 lactation rumen cannulated and 4 lactating intestinal cannulated Dutch dairy cows fed 47% hay and 53% concentrate according to Dutch dairy requirements. Measured rumen degradation characteristics were soluble fraction (S), undegradable fraction (U), potentially degradable fraction (D), lag time (T0) and rate of degradation (Kd) of insoluble but degradable fraction. Percentage bypass feed protein (BCP), ruminal microbial protein synthesized based on available nitrogen (N_MP) and that based on available energy (E_MP), true protein supplied to the small intestine (TPSI), truly absorbed BCP (ABCP), absorbed microbial protein (AVP) in the small intestine, endogenous protein losses in the digestion (ENDP), true digested protein in the small intestine (TAP or DVE in Dutch) and degraded protein balance (PDB or OEB in Dutch) were totally evaluated using the new Dutch DVE/OEB System. Pressure toasting decreased (p<0.001) rumen degradability of CP. It reduced S (p<0.05) and Kd (p=0.06), increased D (p<0.05) and U (p<0.01) but did not alter T0 (p>0.05), thus resulting in dramatically increased BCP (p<0.001) with increasing time and temperature from 73.7 (raw) up to 182.5 g/kg DM ($136^{\circ}C/15min$). Although rumen microbial protein synthesized based on available energy (E_MP) was reduced, true protein (microbial and bypass feed protein) supplied to the small intestine (TPSI) was increased (p<0.001) from 153.1 (raw) to 247.6 g/kg DM ($136^{\circ}C/15min$). Due to digestibility of BCP in the intestine not changing (p>0.05) average 87.8%, the absorbed BCP increased (p<0.001) from 62.3 (raw) to 153.7 g/kg DM ($136^{\circ}C/15min$). Therefore DVE value of true digested protein in the small intestine was significantly increased (p<0.001) from 118.9 (raw) to 197.0 g/kg DM ($136^{\circ}C/15min$) and OEB value of degraded protein balance was significantly reduced (p<0.001) from 147.2 (raw) to 63.1 g/kg DM ($136^{\circ}C/15min$). It was concluded that pressure toasting was effective in shifting degradation of CP of lupinus albus from the rumen to small intestine without changing intestinal digestion. Further studies are required on the degradation and digestion of individual amino acids and on the damaging effects of processing on amino acids, especially the first limiting amino acids.

Effects of different energy and rumen undegradable protein levels on dairy cow's production performance at mid-lactation period (에너지 및 반추위 미분해단백질 수준을 달리한 사료급여가 비유중기 유우에 미치는 영향)

  • Park, Su Bum;Lim, Dong Hyun;Park, Seong Min;Kim, Tae Il;Choi, Sun Ho;Kwon, Eung Gi;Seo, Jakyeom;Seo, Seongwon;Ki, Kwang Seok
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.333-338
    • /
    • 2013
  • Sources of energy and rumen undegradable protein (RUP) have been used to meet nutrient requirements for high producing dairy cows. However studies for manipulation the levels of energy and RUP in diets have been mainly achieved using dairy cows at early-lactation period. The objective of this study thus, was to investigate the effects of different energy and rumen undegradable protein (RUP) levels on dry matter intake and milk yield in Holstein cows at mid-lactation period. Basal diet was prepared as TMR to meet nutrient requirements for dairy cows at mid-lactation according to NRC recommendation. Cows of control group (Con) were fed only basal diets while ground corn (0.5 kg/d), heat-treated soybean meal (0.5 kg/d), and their mixture (0.25 kg of each supplements/d) were added to diets for cows of treatment groups (T1, T2, and T3 respectively) to modulate the level of energy and RUP contents in diets. Addition of energy or RUP source in basal TMR did not affect in total DMI while TMR intake tended to be higher in Con compared to T3. Cows fed T3 diets tended to show increased milk yield and MUN content than those of Con. Cows for T2 as well as T3 had lower ADG (P<0.05) compared with those of Con. We concluded that the addition of RUP source in diets for dairy cows on mid-lactation period might cause the decrement of DMI and ADG.

Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements

  • Gao, Wei;Chen, Aodong;Zhang, Bowen;Kong, Ping;Liu, Chenli;Zhao, Jie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.485-493
    • /
    • 2015
  • This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen microorganisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance.

In-sacco Degradability of Dietary Combinations Formulated with Naturally Fermented Wheat Straw as Sole Roughage

  • Pannu, M.S.;Kaushal, J.R.;Wadhwa, M.;Bakshi, M.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1307-1311
    • /
    • 2002
  • Twelve dietary combinations were prepared using 70 parts of fermented wheat straw (FWS) as the sole roughage supplemented with 30 parts of either the low protein concentrate mixture (Conc.-I), high protein concentrate mixture (conc.-II), maize grains (M), solvent extracted mustard cake (DMC), deoiled rice bran (DRB), uromol bran mixture (UBM), deep stacked poultry litter (DSPL), dried poultry droppings (DPD), M-DMC mixture (50:50), M-UBM mixture (50:50), M-DPD mixture (50:50) or M-UBM-DPD mixture (50:25:25) and evaluated by in-sacco technique. The above dietary combinations were also evaluated by changing the roughage to concentrate ratio to 60:40. The digestion kinetics for DM and CP revealed that FWS:DPD had the highest, whereas, the FWS:M-DMC had the lowest rapidly soluble fraction. The potentially degradable fraction was found to be maximum in FWS:M and minimum in FWS:DPD dietary combinations. The higher degradation rate of FWS:DRB and FWS:UBM combinations was responsible for their significantly (p<0.05) higher effective degradability as compared to other combinations. The highest undegradable fraction noted in FWS:M-UBM-DPD followed by FWS:DMC was responsible for high rumen fill values. The FWS:DRB, FWS:UBM and FWS:DPD combinations had higher potential for DM intake. The dietary combination with higher concentrate level (60:40) was responsible for higher potentially degradable fraction, which was degraded at a faster rate resulting in significantly higher effective degradability as compared to the corresponding dietary combination with low concentrate level (70:30). The low undegradable fraction in the high concentrate diet was responsible for low rumen fill values, which predicted of high potential for DM intake. Out of 24 dietary combinations, FWS with either of UBM, DRB, DMC, Maize, M-DMC or DPD in 70:30 ratio supplemented with minerals and vitamin A in comparison to conventional feeding practice (roughage and concentrate mixture) could be exploited as complete feed for different categories of ruminants.

Effects of Dietary Nitrogen Sources on Fiber Digestion and Ruminal Fluid Characteristics in Sheep Fed Wheat Straw

  • Tan, Z.-L.;Lu, D.-X.;Hu, M.;Niu, W.-Y.;Han, C.-Y.;Ren, X.-P.;Na, R.;Lin, S.-L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1374-1382
    • /
    • 2001
  • Fifteen Inner Mongolian wethers with permanent ruminal and duodenal cannulas were used to study the effects of dietary rumen-undegradable protein (RUP) to rumen-degradable protein (RDP) ratios or protein sources on fiber digestion in the gastrointestinal tract and ruminal fluid characteristics. Fiber digestion and ruminal fermentation were not affected (p>0.05) by dietary RUP to RDP ratios (from 1.54 to 0.72). Soybean meal supplementation improved ruminal digestion. Fish meal supplementation increased (p<0.05) the ruminal degradability of fiber. The different RUP to RDP ratios (from 1.54 to 0.72) did not influence (p>0.05) ruminal fluid pH, but there were differences (p<0.05) in ruminal fluid $NH_3-N$ concentration because of urea replacement. Soybean meal as a dietary protein source decreased (p<0.05) ruminal fluid pH and increased (p<0.05 or p<0.01) $NH_3-N$, acetate, propionate and butyrate concentrations in the rumen. Fish meal as a dietary protein source decreased (p<0.05 or p<0.01) ruminal $NH_3-N$ and acetate concentrations and increased (p<0.05) ruminal propionate concentration. It can be concluded that dietary protein sources have more significant effect on fiber digestion and ruminal fermentation than different dietary RUP to RDP ratios, when the dietary crude protein requirements of growing sheep are satisfied.

Ruminal Behavior of Protein and Starch Free Organic Matter of Lupinus Albus and Vicia Faba in Dairy Cows

  • Yu, P.;Leury, B.J.;Egan, A.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.974-981
    • /
    • 2002
  • Faba beans (vicia faba) (FB) and lupin seeds (Lupinus Albus) (LS) were dry roasted at three temperatures (110, 130, $150^{\circ}C$) for 15, 30 or 45 min to determine the effects of dry roasting on rumen degradation of crude protein and starch free organic matter ($^{PSF}OM$). Rumen degradation characteristics of $^{PSF}OM$ were determined by the nylon bag incubation technique in dairy cows fed 60% hay and 40% concentrate. Measured characteristics of $^{PSF}OM$ were undegradable fraction (U), degradable fraction (D), soluble fraction (S), lag time (T0), and the rate of degradation (Kd). Based on the measured characteristics, rumen availability ($RA^{PSF}OM$) and bypass $^{PSF}OM$ ($B^{PSF}OM$) were calculated. Dry roasting did not have a greater impact on rumen degradation characteristics of $^{PSF}OM$ (p>0.05). S varied from 32.1 (raw) to 30.0, 27.8, 30.8% (LS) and 15.4 (raw) to 14.4, 20.8, 20.9% (FB); D varied from 65.4 (raw) to 66.3, 66.9, 55.9% (LS) and 54.9 (raw) to 55.0, 51.0, 64.7% (FB); U varied from 2.6 (raw) to 7.3, 7.0, 7.7% (LS) and 29.7 (raw) to 30.6, 28.2, 14.4% (FB); Kd varied from 6.0 (raw) to 7.3, 7.0, 7.7% (LS) and 22.4 (raw) to 24.4, 21.1, 7.9% (FB); $B^{PSF}OM$ varied from 35.5 (raw) to 33.8, 36.6, 38.2% (LS) and 41.3 (raw) to 41.5, 39.7, 47.6% (FB) at 110, 130 and $150^{\circ}C$, respectively. Therefore dry roasting did not significantly affect $RA^{PSF}OM$, which were 353.7, 367.9, 349.6, 336.9 (g/kg DM) (LS) and 12.82, 127.0, 133.7, 117.1 (g/kg DM) (FB) at 110, 130 and $150^{\circ}C$, respectively. These results alone with our previously published reports indicate dry roasting had the differently affected pattern of rumen degradation characteristics of various components in LS and FB. It strongly increased bypass crude protein (BCP) and moderately increased starch (BST) with increasing temperature and time but least affected $^{PSF}OM$. Such desirable degradation patterns in dry roasted LS and FB might be beneficial to the high yielding cows which could use more dry roasted $^{PSF}OM$ as an energy source for microbial protein synthesized in the rumen and absorb more amino acids and glucose in the small intestine.