• Title/Summary/Keyword: Rumen Particles

Search Result 20, Processing Time 0.026 seconds

Effect of Frequency of Meals on Intake and Digestion of Tropical Grass Consumed by Rams

  • Assoumaya, C.;Sauvant, D.;Pommier, F.;Boval, M.;Calif, B.;Archimede, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.72-81
    • /
    • 2009
  • Eight Black Belly rams (45.2 kg) fitted with permanent ruminal cannulae were used in a 2${\times}$2 factorial design to determine the effects of feeding frequency and regrowth age on intake and digestion. Rams were fed with 21- or 35-day old fresh pangola grass offered ad libitum two or four times a day. Irrespective of the regrowth age, there was a tendency for intake to be positively correlated with increase in meal frequency. Differences were not significant (p>0.25). Significant effects of meal frequency were observed in NDF and ADF total tract digestibility of the 35-day grass which decreased as the number of meals increased. Meal frequency had no visible effect on feeding behaviour. Total rumen content increased when animals were fed twice a day as opposed to four times a day. Similarly, an accumulation of small and very small particles was observed in the rumen of rams fed twice a day in comparison with those fed four times a day. These results suggest that studies of digestive dynamics performed at a steady state are not representative of the rumen loading observed in farm rams which have two important peaks of meal.

RELATIONSHIP BETWEEN PARTICLE POOL SIZE IN THE RETICULO-RUMEN AND CHEWING TIME IN SHEEP

  • Okamoto, Masahiro;Miyazaki, H.;Oura, R.;Sekine, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.3
    • /
    • pp.225-229
    • /
    • 1990
  • Sixteen mature sheep were fed chaffed orchardgrass hay once a day. Jaw movement of the sheep was recorded for 24 hours before slaughter. Four sheep were slaughtered either prior to eating, 2, 8 or 16 hours after the commencement of eating to measure digesta pool size and particle size distribution in the reticulo-rumen. Eating time was restricted to 120 minutes. Rumination time and actual chewing time during rumination increased with time after the meal. Mean dry matter (DM) pool size before and 2 hours after the meal were 1.36 and 2.45 times of DM intake, respectively. The proportion of large particle (>1.18 mm; LP) in the DM ingested during the meal was caculated to be about 70%. The mean DM and LP pool sizes per DM intake and the mean proportion of LP in the DM pool decreased with time after the meal. There were close negative relationships between either DM or LP pool sizes per DM intake and the chewing activities either expressed as time spent rumination, actual chewing time during rumination or total actual chewing time(total of eating time and actual chewing time during rumination). The difference between DM intake and LP pool size were assumed to be LP degradation in the present experiment, and correlated positively with the chewing activities. A large proportion of the digesta load was comprised of small particles, in excess of the daily intake.

Effects of roughage quality, period of day and time lapse after meal termination on rumen digesta load in goats and sheep

  • Moyo, Mehluli;Adebayo, Rasheed Adekunle;Nsahlai, Ignatius Verla
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1183-1196
    • /
    • 2018
  • Objective: This study ascertained effects of roughage quality, period of day at meal termination and time lapse after feeding on digesta load in the rumen. Methods: Veld hay was untreated (poor roughage quality, PRQ), improved (improved roughage quality, IRQ) by treating with urea or semi-improved by spraying with urea (semi-improved roughage quality, SIRQ). Experiment 1a used four rumen fistulated sheep to determine in-sacco degradability. Twelve sheep ($56.3{\pm}4.59kg$) were blocked by weight and randomly allocated to IRQ (n = 6) and PRQ (n = 6) to determine solid and liquid passage rates. In experiment 1b, nine sheep ($37.6{\pm}9.34kg$) were blocked by weight and randomly allocated to IRQ (n = 4) and PRQ (n = 5) to determine digestibility. Sixteen sheep ($36.47{\pm}9.46kg$) were blocked by body weight and randomly allocated to IRQ (n = 8) and PRQ (n = 8). Two sheep were slaughtered for each sampling time in each treatment (IRQ and PRQ) at 0, 6, 12, and 24 h after feeding to determine rumen load. In experiment 2, eighteen goats ($25.4{\pm}9.08kg$) were blocked by weight and randomly allocated to IRQ (n = 6), SIRQ (n = 6), and PRQ (n = 6). Then all 18 goats were slaughtered soon after meal termination in the morning; afternoon and evening to determine the effect of period of day on rumen fill. Results: Rate of degradation and effective degradability were enhanced by improvement of roughage quality. Roughage quality had no effect on digestibility, but digestibility was higher in goats than sheep. Fractional passage rate of particles was higher for IRQ than PRQ, but similar for liquids. Digesta fractional clearance rates at 24 h after feeding were 0.018/h (IRQ) and 0.006/h (PRQ). Period of day had an influence on rumen load. Neutral detergent fibre load for goats were above 2.03 kg/100 kg body weight for all diet treatments. Conclusion: Following starvation, passage rate had negligible effects on emptying of rumen load.

Influence of Fiber Content and Concentrate Level on Chewing Activity, Ruminal Digestion, Digesta Passage Rate and Nutrient Digestibility in Dairy Cows in Late Lactation

  • Tafaj, M.;Kolaneci, V.;Junck, B.;Maulbetsch, A.;Steingass, H.;Drochner, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1116-1124
    • /
    • 2005
  • The influence of fiber content of hay (low-fiber 47% NDF and high-fiber 62% NDF of DM) and concentrate level (high 50% and low 20% of ration DM) on chewing activity, passage rate and nutrient digestibility were tested on four restrict-fed (11.1 to 13.7 kg DM/d) Holstein cows in late lactation. Aspects of ruminal fermentation and digesta particle size distribution were also investigated on two ruminally cannulated (100 mm i.d.) cows of the same group of animals. All digestion parameters studied were more affected by the fiber content of the hay and its ratio to non structural carbohydrates than by the concentrate level. Giving a diet of high-fiber (62% NDF) hay and low concentrate level (20%) increased chewing activity but decreased solid passage rate and total digestibility of nutrients due to a limited availability of fermentable OM in the late cut fiber rich hay. A supplementation of high-fiber hay with 50% concentrate in the diet seems to improve the ruminal digestion of cell contents, whilst a depression of the ruminal fiber digestibility was not completely avoided. Giving a diet of low-fiber (47% NDF) hay and high concentrate level (50%) reduced markedly the chewing and rumination activity, affected negatively the rumen conditions and, consequently, the ruminal digestion of fiber. A reduction of the concentrate level from 50 to 20% in the diet of low-fiber hay improved the rumen conditions as reflected by an increase of the ruminal solid passage rate and of fiber digestibility and in a decrease of the concentration of large particles and of the mean particle size of the rumen digesta and of the faeces. Generally, it can be summarised that, (i) concentrate supplementation is not a strategy to overcome limitations of low quality (fiber-rich) hay, and (ii) increase of the roughage quality is an effective strategy in ruminant nutrition, especially when concentrate availability for ruminants is limited.

EFFECTS OF HEAT EXPOSURE ON WATER METABOLISM AND PASSAGE IN SHEEP

  • Katoh, K.;Buranakarl, C.;Matsunaga, N.;Lee, S.R.;Sugawara, T.;Sasaki, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.2 no.2
    • /
    • pp.91-97
    • /
    • 1989
  • The present experiment was carried out to investigate the effects of heat exposure on water metabolism and the passage of indigestible particles in sheep. Water intake, respiratory rate, rectal temperature and pH of ruminal fluid and urine were significantly higher (P<0.05) in the hot environment ($32\;^{\circ}C$) than in the control environment ($20\;^{\circ}C$). Urine osmolality and blood volume were increased, while glomerular filtration rate was decreased, in the hot environment. The liquid flow rate from reticulo-rumen and the excretion of indigestible particles of specific gravity 0.99 (but not 1.27 or 1.38) were increased in the hot environment. From these findings, it is suggested that an increased water intake evoked by heat exposure might affect the flow rate of digesta in sheep.

Diurnal Changes in the Distribution of Ruminal Bacteria Attached to Feed Particles in Sheep Fed Hay Once Daily

  • Pan, J.;Suzuki, T.;Ueda, K.;Tanaka, K.;Okubo, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1708-1716
    • /
    • 2000
  • A study was made of diurnal changes in the ruminal bacteria associated with feed particles, i.e., non-associated (NAB), loosely associated (LAB), and tightly associated with particles (TAB), and the TAB concentration in different particle sizes from sheep fed orchardgrass (OG) or alfalfa (ALF) hay. Diaminopimelic acid (DAPA) was used to determine the TAB mass. Results showed that the bacterial masses in NAB and LAB were small, but comprised over 90% in TAB. The TAB mass in the ALF group sharply increased within 2 h after feeding and decreased afterward. The TAB mass showed the same trend in the OG group, increasing from 0 h to 2 h, but remained at the same level up to 14 h after feeding. The peak bacterial mass was, however, lower in the OG than the ALF group. The TAB concentration reflected the changes in total particulate tightly associated bacterial masses in both groups of hay fed sheep. Number of bacterial colonies per particle increased as the particulate size decreased in both groups. This difference, however, tended to decline as the postprandial period was prolonged. DAPA, however, tended to overestimate the TAB mass in the reticulo-rumen digesta of the hay fed sheep.

Rumen Microbes, Enzymes and Feed Digestion-A Review

  • Wang, Y.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1659-1676
    • /
    • 2002
  • Ruminant animals develop a diverse and sophisticated microbial ecosystem for digesting fibrous feedstuffs. Plant cell walls are complex and their structures are not fully understood, but it is generally believed that the chemical properties of some plant cell wall compounds and the cross-linked three-dimensional matrix of polysaccharides, lignin and phenolic compounds limit digestion of cell wall polysaccharides by ruminal microbes. Three adaptive strategies have been identified in the ruminal ecosystem for degrading plant cell walls: production of the full slate of enzymes required to cleave the numerous bonds within cell walls; attachment and colonization of feed particles; and synergetic interactions among ruminal species. Nonetheless, digestion of fibrous feeds remains incomplete, and numerous research attempts have been made to increase this extent of digestion. Exogenous fibrolytic enzymes (EFE) have been used successfully in monogastric animal production for some time. The possibility of adapting EFE as feed additives for ruminants is under intensive study. To date, animal responses to EFE supplements have varied greatly due to differences in enzyme source, application method, and types of diets and livestock. Currently available information suggests delivery of EFE by applying them to feed offers the best chance to increase ruminal digestion. The general tendency of EFE to increase rate, but not extent, of fibre digestion indicates that the products currently on the market for ruminants may not be introducing novel enzyme activities into the rumen. Recent research suggests that cleavage of esterified linkages (e.g., acetylesterase, ferulic acid esterase) within the plant cell wall matrix may be the key to increasing the extent of cell wall digestion in the rumen. Thus, a crucial ingredient in an effective enzyme additive for ruminants may be an as yet undetermined esterase that may not be included, quantified or listed in the majority of available enzyme preparations. Identifying these pivotal enzyme(s) and using biotechnology to enhance their production is necessary for long term improvements in feed digestion using EFE. Pretreating fibrous feeds with alkali in addition to EFE also shows promise for improving the efficacy of enzyme supplements.

One Point In situ Incubation Estimation of Undegraded Protein in Forages

  • Gupta, Neeraj;Tyagi, A.K.;Singhal, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1603-1609
    • /
    • 2006
  • To estimate undegraded intake protein (UIP) fraction in feeds and fodders, on the basis of their neutral detergent insoluble N content was studied. Samples of six feeds and forages were incubated in situ for a time equivalent to their mean retention time, estimated on the basis of their digestibility plus 10 h (to account for a lag in passage of particles from the rumen). The samples were incubated for 0, 25, 50, 75 and 100% of the estimated total mean retention time. UIP value of leguminous forages, obtained from the fractional rates of degradation and passage, were highly correlated with those estimated from samples incubated for 75% of total mean retention time, while incubating the non-leguminous forages and groundnut cake for this point over estimate the UIP fraction.

INORGANIC SELENIUM FOR SHEEP I. SELENIUM BALANCE AND SELENIUM LEVELS IN THE DIFFERENT RUMINAL FLUID FRACTIONS

  • Serra, A.B.;Nakamura, K.;Matsui, T.;Harumoto, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.83-89
    • /
    • 1994
  • The effects of inorganic selenium (Se), selenate and selenite on Se balance levels in the different ruminal fluid fractions were studied using Japanese Corriedale wethers with an average body weight of 47 kg. A $3{\times}3$ Latin square design was used with three animal, three periods and three treatments. In each period, there was 7 d dietary adjustment followed by 5 d total collection of urine and feces. Ruminal fluid samples were obtained at 0, 1, 3, 5 and 7 h postprandially on the final day of the collection period. The three dietary treatments were: (1) without Se supplementation (control); (2) with Se supplement as sodium selenate; and (3) sodium selenite at a rate of 0.2 mg Se/kg dietary DM. The basal diet was timothy hay (Phleum pratense L.) fed 2% of body weight/d. Results indicated that Se balance were higher (p < 0.05) for those animals under supplementation than those animals under control. Overall data gathered showed a similar digestion balance of selenate and selenite in sheep. Inorganic Se, both selenate and selenite produced positive Se contents of the ruminal feed particles and protozoa. Bacterial Se increased (p < 0.05) on the first three hours post-prandially in Se supplemented diets. Gross ruminal fluid fraction, although there was improvement on their Se content under the supplemented diets, the changes were insignificant over the control. free inorganic Se and Se in soluble protein of the ruminal fluid were not significantly different for selenate and selenite. Most of the Se in the ruminal fluids of the animals under supplementation were insoluble, indicating the influence of rumen environments on Se bioavaliability.

The Effects of Processing Methods of Corn on In sacco Starch and Protein Degradability in the Rumen (옥수수 가공방법이 In sacco 전분 및 단백질 분해율에 미치는 영향)

  • Son, K.N.;Kim, Y.K.;Lee, S.K.;Kim, H.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.421-432
    • /
    • 2003
  • The objective of this study was to examine the effects of processing methods of corn grains on protein and starch degradability in the rumen by three ruminally cannulated dry Holstein cows. The corns for these experiments were untreated; whole corn L(density; 660 g/$\ell$), whole corn H(density; 740 g/$\ell$), and treated by four different types: Ground corn, 3.8 mm, 2.8 mm, and 1.5 mm flaked corn. The results obtained were summarized as follows: For 48 hrs, the protein degradabilities were high in order, ground corn, 1.5 mm, 2.8 mm, and 3.8 mm flaked corn(82.6, 76.5, 64.5, and 33.9%, respectively). Flaked corn grains were degraded lower than ground corn. However, as increasing the processing degree of flaking, the protein degradabilities, from 4 hrs to 48 hrs, were increased. The starch degradabilities on 48 hrs were higher in 1.5 and 2.8 mm flaked corns, ground corn, 3.8 mm flaked corn(99.1, 91.5, 89.5, and 68.9%, respectively) than whole corn L(32.0%) and whole corn H(20.5%)(P<0.05). By increasing the processing degree of flaking, the protein degradabilty between 2.8 mm and 3.8 mm was increased significantly from 68.9% to 91.5%, however, that of 1.5 mm flaked corn, processed thinner, tended to be increased slightly, but was not significantly different. From 12 hrs to 24 hrs, whole corn L was degraded little more than whole corn H in starch, was not significantly different. However, after 48 hr incubation in the rumen, whole corn L was degraded more 50% than whole corn H(P<0.05). The value of degradation parameter “a” of protein was lower in all flaked corns than in ground corn. In contrast, the value of degradation parameter “a” of starch was significantly higher in all flaked corns than in ground corn(P<0.05). It seemed that by flaking the corn grains, starch particles were gelatinized, and then, starch was degraded more rapidly, while protein was degraded more slowly. Referring to these kinds of physical characteristics of grain sources in ruminal degradabilities, it is possible to synchronize the fermentation of nitrogen and carbohydrate sources, in formulating the cattle diets.