• Title/Summary/Keyword: Rumen Microbes

Search Result 97, Processing Time 0.023 seconds

The Effect of Plant Extracts on In-vitro Ruminal Fermentation, Methanogenesis and Methane-related Microbes in the Rumen

  • Kim, E.T.;Min, K.S.;Kim, C.H.;Moon, Y.H.;Kim, S.C.;Lee, Sung-Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.517-522
    • /
    • 2013
  • The effect on methanogens attached to the surface of rumen ciliate protozoa by the addition of plant extracts (pine needles and ginkgo leaves) was studied with particular reference to their effectiveness for decreasing methane emission. The plant extracts (pine needles and ginkgo leaves) were added to an in vitro fermentation incubated with rumen fluid. The microbial population including bacteria, ciliated-associated methanogen, four different groups of methanogens and Fibrobacter succinogenes were quantified by using the real-time PCR. Gas profiles including methane, carbon dioxide and hydrogen, and runinal fermentation characteristics were observed in vitro. The methane emission from samples with an addition of individual juices from pine needles, ginkgo leaves and 70% ethanol extract from ginko leaves was significantly lower (p<0.05, 27.1, 28.1 and 28.1 vs 34.0 ml/g DM) than that of the control, respectively. Total VFAs in samples with an addition of any of the plant extracts were significantly lower than that of the control (p<0.05) as well. The order Methanococcales and the order Methanosarcinales were not detected by using PCR in any incubated mixtures. The ciliate-associated methanogens population decreased from 25% to 49% in the plant extacts as compared to control. We speculate that the supplementation of juice from pine needles and ginkgo leaves extract (70% ethanol extract) decreased the protozoa population resulting in a reduction of methane emission in the rumen and thus inhibiting methanogenesis. The order Methanobacteriales community was affected by addition of all plant extracts and decreased to less than the control, while the order Methanomicrobiales population showed an increase to more than that of the control. The F. succinogenes, the major fibrolytic microorganism, population in all added plant extracts was increased to greater than that of the control. In conclusion, pine needles and ginkgo leaves extracts appear to have properties that decrease methanogenesis by inhibiting protozoa species and may have a potential for use as additives for ruminants.

Molecular cloning, purification, expression, and characterization of β-1, 4-endoglucanase gene (Cel5A) from Eubacterium cellulosolvens sp. isolated from Holstein steers' rumen

  • Park, Tansol;Seo, Seongwon;Shin, Teaksoon;Cho, Byung-Wook;Cho, Seongkeun;Kim, Byeongwoo;Lee, Seyoung;Ha, Jong K.;Seo, Jakyeom
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.607-615
    • /
    • 2018
  • Objective: This study was conducted to isolate the cellulolytic microorganism from the rumen of Holstein steers and characterize endoglucanase gene (Cel5A) from the isolated microorganism. Methods: To isolate anaerobic microbes having endoglucanase, rumen fluid was obtained from Holstein steers fed roughage diet. The isolated anaerobic bacteria had 98% similarity with Eubacterium cellulosolvens (E. cellulosolvens) Ce2 (Accession number: AB163733). The Cel5A from isolated E. cellulolsovens sp. was cloned using the published genome sequence and expressed through the Escherichia coli BL21. Results: The maximum activity of recombinant Cel5A (rCel5A) was observed at $50^{\circ}C$ and pH 4.0. The enzyme was constant at the temperature range of $20^{\circ}C$ to $40^{\circ}C$ but also, at the pH range of 3 to 9. The metal ions including $Ca^{2+}$, $K^+$, $Ni^{2+}$,$Mg^{2+}$, and $Fe^{2+}$ increased the endoglucanase activity but the addition of $Mn^{2+}$, $Cu^{2+}$, and $Zn^{2+}$ decreased. The Km and Vmax value of rCel5A were 14.05 mg/mL and $45.66{\mu}mol/min/mg$. Turnover number, Kcat and catalytic efficiency, Kcat/Km values of rCel5A was $96.69(s^{-1})$ and 6.88 (mL/mg/s), respectively. Conclusion: Our results indicated that rCel5A of E. cellulosolvens isolated from Holstein steers had a broad pH range with high stability under various conditions, which might be one of the beneficial characteristics of this enzyme for possible industrial application.

Effects of Defaunation on Fermentation Characteristics, Degradation of Ryegrass Hay and Methane Production by Rumen Microbes In Vitro When Incubated with Plant Oils

  • Qin, Wei-Ze;Li, Cheng-Yun;Choi, Seong-Ho;Jugder, Shinekhuu;Kim, Hyun-Ju;Lee, Sang-Suk;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.193-201
    • /
    • 2014
  • This study was conducted to examine the effects of defaunation (removal of live protozoa) on fermentation characteristics, degradation of ryegrass hay and $CH_4$ (methane) production by rumen microbes when incubated with plant oils (SO, sunflower oil and LO, linseed oil) in vitro. Sodium lauryl sulfate (0.000375 g/ml) as a defaunation reagent was added into the culture solution and incubated anaerobically up to 24 h at $39^{\circ}C$. pH from defaunation was increased for all treatments from 6 h incubation times (p<0.01-0.001) compared with those from fauantion. Concentration of ammonia-N from defaunation is higher than that from faunation at 3 h (p<0.001), 12 h (p<0.05) and 24 h (p<0.001) incubation times. Defaunation decreased (p<0.01-0.001) total volatile fatty acid concentration at all incubation times. Molar proportions of $C_2$ (acetate, p<0.05-0.001) and butyrate (p<0.01-0.001) were also decreased by defaunation at all incubation times. Molar proportion of $C_3$ (propionate), however, was increased by defaunation at all incubation times (p<0.001). Thus the rate of $C_2$ to $C_3$ was decreased by defaunation at all incubation times (p<0.001). Defaunation decreased ED (effective degradability) of dry matter (p<0.001) and ED of neutral detergent fiber (p<0.001) of ryegrass hay. Defaunation decreased total gas, $CH_4$ production, $CH_4$ % in total gas and $CH_4/CO_2$ at all incubation times (p<0.001). Oil supplementation decreased total gas (p<0.05-0.001), $CH_4$ production (p<0.001) and $CH_4$ % in total gas (p<0.001) compared with control at all incubation times. The result of this study showed that defaunation combined with oil supplementation may cause an alteration of microbial communities and further medicate the fermentation pattern, resulting in both reduction of degradation of ryegrass hay and $CH_4$ production. No difference, however, was observed in all the examinations between SO and LO.

Sarsaponin Effects on Ruminal Fermentation and Microbes, Methane Production, Digestibility and Blood Metabolites in Steers

  • Lila, Zeenat Ara;Mohammed, Nazimuddin;Kanda, Shuhei;Kurihara, Mitsunori;Itabashi, Hisao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1746-1751
    • /
    • 2005
  • The objective of this study was to evaluate the effects of sarsaponin on methane production, ruminal fermentation, nutrient digestion and blood metabolites using three Holstein steers in a 3${\times}$3 Latin Square design. The steers were fed Sudangrass hay plus concentrate mixture at a ratio 1.5:1 twice daily, and sarsaponin (0, 0.5 and 1% of DM), which was given at 09:00 and 17:00 h daily by mixing with concentrate. Rumen samples were collected 0, 2, and 5 h after morning dosing. Ruminal pH was numerically decreased and numbers of protozoa were decreased linearly (p<0.01) by treatment. Ruminal ammonia-N was reduced (linear; p<0.05) and total VFA was increased (quadratic; p<0.05) at 2 and 5 h after sarsaponin dosing. The molar proportion of acetate was decreased (quadratic; p<0.05) and propionate was increased (linear; p<0.01) at all sampling times. Blood plasma glucose was increased and urea-N was decreased (linear; p<0.05) at 2 and 5 h after dosing. Methane was decreased by approximately 12.7% (linear; p<0.05). The apparent digestibility of DM and NDF were decreased (quadratic; p<0.05) and that of CP remained unchanged due to the sarsaponin. The numbers of cellulolytic bacteria were decreased (quadratic; p<0.05), while numbers of total viable bacteria remained unchanged due to the sarsaponin. These results show that sarsaponin can partially inhibit rumen methanogenesis in vivo and improve ruminal fermentation, which supports our previous in vitro results.

Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw

  • Kongphitee, Kanokwan;Sommart, Kritapon;Phonbumrung, Thamrongsak;Gunha, Thidarat;Suzuki, Tomoyuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1431-1441
    • /
    • 2018
  • Objective: This study was conducted to assess the effects of replacing rice straw with different proportions of cassava pulp on growth performance, feed intake, digestibility, rumen microbial population, energy partitioning and efficiency of metabolizable energy utilization in beef cattle. Methods: Eighteen yearling Thai native beef cattle (Bos indicus) with an average initial body weight (BW) of $98.3{\pm}12.8kg$ were allocated to one of three dietary treatments and fed ad libitum for 149 days in a randomized complete block design. Three dietary treatments using different proportions of cassava pulp (100, 300, and 500 g/kg dry matter basis) instead of rice straw as a base in a fermented total mixed ration were applied. Animals were placed in a metabolic pen equipped with a ventilated head box respiration system to determine total digestibility and energy balance. Results: The average daily weight gain, digestible intake and apparent digestibility of dry matter, organic matter and non-fiber carbohydrate, total protozoa, energy intake, energy retention and energy efficiency increased linearly (p<0.05) with an increasing proportion of cassava pulp in the diet, whereas the three main types of fibrolytic bacteria and energy excretion in the urine (p<0.05) decreased. The metabolizable energy requirement for the maintenance of yearling Thai native cattle, determined by a linear regression analysis, was $399kJ/kg\;BW^{0.75}$, with an efficiency of metabolizable energy utilization for growth of 0.86. Conclusion: Our results demonstrated that increasing the proportion of cassava pulp up to 500 g/kg of dry matter as a base in a fermented total mixed ration is an effective strategy for improving productivity in zebu cattle.

Effect of different harvesting times on the nutritive value and fermentation characteristics of late and early-maturing forage oats by rumen microbes

  • Zhang, Yan;Lee, Ye Hyun;Nogoy, Kim Margarette;Choi, Chang Weon;Kim, Do Hyung;Li, Xiang Zi;Choi, Seong Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.125-135
    • /
    • 2019
  • Late-maturing Dark Horse, and early-maturing High Speed oat varieties were seeded on March 3, 2016 and harvested on three periods: May 31, June 10, and June 20 coded as early, mid, and late-harvest, respectively. Dried and ground samples were subjected to chemical analysis to determine nutritional values such as crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), ether extract (EE), organic matter (OM), and total digestible nutrient (TDN). Effective degradability (ED) of nutrients and fermentation characteristics including volatile fatty acid (VFA) composition, pH, gas production, and ammonia-N concentration were evaluated through an in vitro digestion method. Varieties of oat hays showed significant difference in terms of nutritional value, ED, and fermentation characteristics. Dark Horse showed higher CP and OM, and lower EE contents than High Speed. Dark Horse also showed higher EDDM (dry matter), NDF, ADF, and OM than High Speed, and although High Speed showed higher pH and ammonia-N, it had lower gas and total VFA production than Dark Horse. However, in terms of harvest period, significant difference was only observed in Dark Horse where early-harvest increased the CP, and late-harvest increased the NDF and OM contents. In addition, early-harvest of Dark Horse increased the EDDM and EDNDF of the forage. Therefore, early-harvest of late-maturing Dark Horse would give better nutrient efficiency than High Speed. Allowing Dark Horse to advance in maturity would decrease its nutrient productivity and efficiency.

Effects of different feeding systems on ruminal fermentation, digestibility, methane emissions, and microbiota of Hanwoo steers

  • Seul Lee;Jungeun Kim;Youlchang Baek;Pilnam Seong;Jaeyong Song;Minseok Kim;Seungha Kang
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1270-1289
    • /
    • 2023
  • This study evaluates how different feeding systems impact ruminal fermentation, methane production, and microbiota of Hanwoo steers native to Korea. In a replicated 2 × 2 crossover design over 29 days per period, eight Hanwoo steers (507.1 ± 67.4 kg) were fed twice daily using a separate feeding (SF) system comprising separate concentrate mix and forage or total mixed rations (TMR) in a 15:85 ratio. The TMR-feeding group exhibited a considerable neutral detergent fiber digestibility increase than the SF group. However, ruminal fermentation parameters and methane production did not differ between two feeding strategies. In addition, TMR-fed steers expressed elevated Prevotellaceae family, Christensenellaceae R-7 group, and an unidentified Veillonellaceae family genus abundance in their rumen, whereas SF-fed steers were rich in the Rikenellaceae RC9 gut group, Erysipelotrichaceae UCG-004, and Succinivibrio. Through linear regression modeling, positive correlations were observed between the Shannon Diversity Index and the SF group's dry matter intake and methane production. Although feeding systems do not affect methane production, they can alter ruminal microbes. These results may guide future feeding system investigations or ruminal microbiota manipulations as a methane-mitigation practice examining different feed ingredients.

Effects of replacement of para-grass with oil palm compounds on body weight, food intake, nutrient digestibility, rumen functions and blood parameters in goats

  • Buranakarl, C.;Thammacharoen, S.;Semsirmboon, S.;Sutayatram, S.;Chanpongsang, S.;Chaiyabutr, N.;Katoh, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.921-929
    • /
    • 2020
  • Objective: The aim of the present study was to investigate the beneficial effects of dietary supplementation with oil palm frond (leaf) (OPF) with and without oil palm meal (OPM) on nutrient intake and digestibility, ruminal fermentation and growth performance in goats. Methods: Six female crossbred goats were fed for 28 days of 3 diet treatments; 100% para-grass (T1); 50% para-grass + 50% OPF (T2), and 30% para-grass + 50% OPF + 20% OPM (T3). Body weight, rectal temperature, respiratory rate, and urine volume, food intake, dry matter intake and water intake were measured daily. Nutrient digestibility was determined from five consecutive days of last week in each diet. Ruminal fluid, urine and blood were collected at the end for determination of rumen protozoa and volatile fatty acid contents, urinary allantoin excretion, blood cell count and chemistry profiles. Results: Goats fed T2 and T3 showed higher dry matter and nutrients intakes while protein digestibility was suppressed compared with those for T1. Crude fat digestibility declined in T2 but maintained after adding the OPM (T3). High fat intake by giving OPF and OPM corresponded to a higher ruminal acetate/propionate ratio (C2/C3) and serum cholesterol level. An increased urinary allantoin/creatinine ratio was found in T2 and T3 compared with T1, implying an increased number of ruminal microbes. Conclusion: Increased dry matter intake in T2 and T3 suggested that oil palm by-products are partly useful as a replacement for para-grass in goats. Replacement with the by-products increased plasma cholesterol level, which suggested that these products are a useful energy source. Changes in rumen parameters suggested an increased microbial number and activity suitable for acetate production. However, the limited digestibility of protein implies that addition of high protein feeds may be recommended to increase body weight gain of goats.

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.

Effect of Exogenous Fibrolytic Enzyme Application on the Microbial Attachment and Digestion of Barley Straw In vitro

  • Wang, Y.;Ramirez-Bribiesca, J.E.;Yanke, L.J.;Tsang, A.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • The effects of exogenous fibrolytic enzymes (EFE; a mixture of two preparations from Trichoderma spp., with predominant xylanase and ${\beta}$-glucanase activities, respectively) on colonization and digestion of ground barley straw and alfalfa hay by Fibrobacter succinogenes S85 and Ruminococcus flavefaciens FD1 were studied in vitro. The two levels (28 and 280 ${\mu}g$/ml) of EFE tested and both bacteria were effective at digesting NDF of hay and straw. With both substrates, more NDF hydrolysis (p<0.01) was achieved with EFE alone at 280 than at 28 ${\mu}g$/ml. A synergistic effect (p<0.01) of F. succinogenes S85 and EFE on straw digestion was observed at 28 but not 280 ${\mu}g$/ml of EFE. Strain R. flavefaciens FD1 digested more (p<0.01) hay and straw with higher EFE than with lower or no EFE, but the effect was additive rather than synergistic. Included in the incubation medium, EFE showed potential to improve fibre digestion by cellulolytic ruminal bacteria. In a second batch culture experiment using mixed rumen microbes, DM disappearance (DMD), gas production and incorporation of $^{15}N$ into particle-associated microbial N ($^{15}N$-PAMN) were higher (p<0.001) with ammoniated (5% w/w; AS) than with native (S) ground barley straw. Application of EFE to the straws increased (p<0.001) DMD and gas production at 4 and 12 h, but not at 48 h of the incubation. EFE applied onto S increased (p<0.01) $^{15}N$-PAMN at 4 h only, but EFE on AS increased (p<0.001) $^{15}N$-PAMN at all time points. Prehydrolysis increased (p<0.01) DMD from both S and AS at 4 and 12 h, but reduced (p<0.01) $^{15}N$-PAMN in the early stage (4 h) of the incubation, as compared to non-prehydrolyzed samples. Application of EFE to barley straw increased rumen bacterial colonization of the substrate, but excessive hydrolytic action of EFE prior to incubation decreased it.