• 제목/요약/키워드: Rumen Microbes

검색결과 97건 처리시간 0.017초

Rumen Manipulation to Improve Animal Productivity

  • Santra, A.;Karim, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권5호
    • /
    • pp.748-763
    • /
    • 2003
  • Anaerobic rumen microorganisms mainly bacteria, protozoa and fungi degrade ligno-cellulosic feeds consumed by the ruminants. The ruminants in developing countries are predominantly maintained on low grade roughage and grazing on degraded range land resulting in their poor nutrient utilization and productivity. Hence, manipulation of rumen fermentation was tried during last two decades to optimize ruminal fermentation for improving nutrient utilization and productivity of the animals. Modification of rumen microbial composition and their activity was attempted by using chemical additives those selectively effect rumen microbes, introduction of naturally occurring or genetically modified foreign microbes into the rumen and genetically manipulation of existing microbes in the rumen ecosystem. Accordingly, rumen protozoa were eliminated by defaunation for reducing ruminal methane production and increasing protein outflow in the intestine, resulting in improve growth and feed conversion efficiency of the animals. Further, Interspecies trans-inoculation of rumen microbes was also successfully used for annulment of dietary toxic factor. Additionally, probiotics of bacterial and yeast origin have been used in animal feeding to stabilize rumen fermentation, reduced incidence of diarrhoea and thus improving growth and feed conversion efficiency of young stalk. It is envisaged that genetic manipulation of rumen microorganisms has enormous research potential in developing countries. In view of feed resource availability more emphasis has to be given for manipulating rumen fermentation to increase cellulolytic activity for efficient utilization of low grade roughage.

Application of Molecular Biology to Rumen Microbes -Review-

  • Kobayashi, Y.;Onodera, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권1호
    • /
    • pp.77-83
    • /
    • 1999
  • Molecular biological techniques that recently developed, have made it possible to realize some of new attempts in the research field of rumen microbiology. Those are 1) cloning of genes from rumen microorganisms mainly in E. coli, 2) transformation of rumen bacteria and 3) ecological analysis with nonculturing methods. Most of the cloned genes are for polysaccharidase enzymes such as endoglucanase, xylanase, amylase, chitinase and others, and the cloning rendered gene structural analyses by sequencing and also characterization of the translated products through easier purification. Electrotransformation of Butyrivibrio fibrisolvens and Prevotella ruminicola have been made toward the direction for obtaining more fibrolytic, acid-tolerant, depoisoning or essential amino acids-producing rumen bacterium. These primarily required stable and efficient gene transfer systems. Some vectors, constructed from native plasmids of rumen bacteria, are now available for successful gene introduction and expression in those rumen bacterial species. Probing and PCR-based methodologies have also been developed for detecting specific bacterial species and even strains. These are much due to accumulation of rRNA gene sequences of rumen microbes in databases. Although optimized analytical conditions are essential to reliable and reproducible estimation of the targeted microbes, the methods permit long term storage of frozen samples, providing us ease in analytical work as compared with a traditional method based on culturing. Moreover, the methods seem to be promissing for obtaining taxonomic and evolutionary information on all the rumen microbes, whether they are culturable or not.

Selection of plant oil as a supplemental energy source by monitoring rumen profiles and its dietary application in Thai crossbred beef cattle

  • Matsuba, Keiji;Padlom, Apirada;Khongpradit, Anchalee;Boonsaen, Phoompong;Thirawong, Prayad;Sawanon, Suriya;Suzuki, Yutaka;Koike, Satoshi;Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권10호
    • /
    • pp.1511-1520
    • /
    • 2019
  • Objective: The present study was conducted to select a plant oil without inhibitory effects on rumen fermentation and microbes, and to determine the optimal supplementation level of the selected oil in a series of in vitro studies for dietary application. Then, the selected oil was evaluated in a feeding study using Thai crossbred beef cattle by monitoring growth, carcass, blood and rumen characteristics. Methods: Rumen fluid was incubated with substrates containing one of three different types of plant oil (coconut oil, palm oil, and soybean oil) widely available in Thailand. The effects of each oil on rumen fermentation and microbes were monitored and the oil without a negative influence on rumen parameters was selected. Then, the dose-response of rumen parameters to various levels of the selected palm oil was monitored to determine a suitable supplementation level. Finally, an 8-month feeding experiment with the diet supplemented with palm oil was carried out using 12 Thai crossbred beef cattle to monitor growth, carcass, rumen and blood profiles. Results: Batch culture studies revealed that coconut and soybean oils inhibited the most potent rumen cellulolytic bacterium Fibrobacter succinogenes, while palm oil had no such negative effect on this and on rumen fermentation products at 5% or higher supplementation level. Cattle fed the diet supplemented with 2.5% palm oil showed improved feed conversion ratio (FCR) without any adverse effects on rumen fermentation. Palm oil-supplemented diet increased blood cholesterol levels, suggesting a higher energy status of the experimental cattle. Conclusion: Palm oil had no negative effects on rumen fermentation and microbes when supplemented at levels up to 5% in vitro. Thai crossbred cattle fed the palm oil-supplemented diet showed improved FCR without apparent changes of rumen and carcass characteristics, but with elevated blood cholesterol levels. Therefore, palm oil can be used as a beneficial energy source.

Mycotoxins and Their Biotransformation in the Rumen: A Review

  • Upadhaya, Santi Devi;Park, M.A.;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권9호
    • /
    • pp.1250-1260
    • /
    • 2010
  • Mycotoxins are secondary metabolites produced by fungi. These toxins pose serious health concerns to animals as well as human beings. Biodegradation of these mycotoxins has been considered as one of the best strategies to decontaminate food and feedstuffs. Biodegradation employs the application of microbes or enzymes to contaminated food and feedstuffs. Ruminants are considered to be resistant to the adverse effects of mycotoxins presumably due to the biodegrading ability of rumen microbes compared to mono-gastric animals. Therefore, rumen microbial source or microbial enzyme could be a great asset in biological detoxification of mycotoxins. Isolation and characterization of pure culture of rumen microorganisms or isolation and cloning of genes encoding mycotoxin-degrading potential would prove to have overall beneficial impact in the food and feed industry.

Purine Derivatives Excreted in Urine as an Indicator Estimating Microbial Yield from the Rumen: A - Review

  • Kanjanapruthipong, J.;Len, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제11권3호
    • /
    • pp.209-216
    • /
    • 1998
  • The paper presented here is aimed at increasing knowledge on purine metabolism in ruminants and hence the quantification of microbial cells entering the small intestine from urinaη excretion of purine derivatives. Nucleic acid metabolisms of micro-organisms in the rumen, digestion and absorption of nucleic acids entering the intestines, metabolisms of absorbed and endogenous purines involving de novo synthesis of nucleic acids in the ruminants host, and the relationship between absorbed and excreted purines are reviewed. Principal concerns about an amount of purine derivatives excreted in urine in relation to a change in purine-N: total-N ratios in rumen microbes that leave the rumen are discussed. The use of urinary excretion of purine derivatives as an indicator of the amount of microbial biomass leaving the rumen has to be done with some caution since it may be impossible to get a representative sample of microbes entering the intestine and thus yield estimates are relative rather than absolute.

옥수수 알곡의 가공처리에 의한 영양소 이용성 향상에 관한 연구 II. 한우에 있어서 옥수수 알곡의 가공처리가 반추위 미생물의 부착양상에 미치는 영향 (Studies on the Improvement of Utility Value of Corn Grains by Different Processing Methods II. Effects of Different Corn Processing Methods on Attachment Characteristics of Rumen Microbes in Hanwoo)

  • 김완영;김홍욱;강충민
    • 현장농수산연구지
    • /
    • 제3권1호
    • /
    • pp.132-141
    • /
    • 2001
  • 옥수수 알곡(whole corn)을 분쇄(ground corn; GC), 파쇄(cracked corn; CC), 박편(flaked corn; FC) 및 수침(soaked corn; SC)등 가공방법을 달리하여 처리하였을 때 반추가축에 있어서 미생물의 부착양상에 미치는 영향을 구명하고자 한 본 연구의 요약은 다음과 같다. 1. 한우의 반추위내에 각 처리별 옥수수를 12 및 24시간 배양하여 주사 전자현미경을 이용하여 반추 미생물의 부착양상과 사료 기질의 형태를 조사하였다. 2. 분쇄 및 파쇄 옥수수에서 가장 많은 미생물들이 부착되어 있는 것이 관찰되었고 옥수수 알곡 및 수침 옥수수는 전분입자에 미생물의 부착을 관찰 할 수 없었으며, 단지 배양시간이 경과함에 따라 옥수수의 외피에 많은 미생물이 부착되었고 외피의 분해가 일어나는 것이 관찰되었다. 3. SEM 결과를 통하여, 옥수수의 입자가 작게 가공처리 될수록 미생물 군락의 형성이 용이하여, 반추위내 옥수수의 분해율을 향상시킨다고 판단된다.

- Invited Review - Hydrogen production and hydrogen utilization in the rumen: key to mitigating enteric methane production

  • Roderick I. Mackie;Hyewon Kim;Na Kyung Kim;Isaac Cann
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.323-336
    • /
    • 2024
  • Molecular hydrogen (H2) and formate (HCOO-) are metabolic end products of many primary fermenters in the rumen ecosystem. Both play a vital role in fermentation where they are electron sinks for individual microbes in an anaerobic environment that lacks external electron acceptors. If H2 and/or formate accumulate within the rumen, the ability of primary fermenters to regenerate electron carriers may be inhibited and microbial metabolism and growth disrupted. Consequently, H2- and/or formate-consuming microbes such as methanogens and possibly homoacetogens play a key role in maintaining the metabolic efficiency of primary fermenters. There is increasing interest in identifying approaches to manipulate the rumen ecosystem for the benefit of the host and the environment. As H2 and formate are important mediators of interspecies interactions, an understanding of their production and utilization could be a significant starting point for the development of successful interventions aimed at redirecting electron flow and reducing methane emissions. We conclude by discussing in brief ruminant methane mitigation approaches as a model to help understand the fate of H2 and formate in the rumen ecosystem.

Metagenome Analysis of Protein Domain Collocation within Cellulase Genes of Goat Rumen Microbes

  • Lim, SooYeon;Seo, Jaehyun;Choi, Hyunbong;Yoon, Duhak;Nam, Jungrye;Kim, Heebal;Cho, Seoae;Chang, Jongsoo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권8호
    • /
    • pp.1144-1151
    • /
    • 2013
  • In this study, protein domains with cellulase activity in goat rumen microbes were investigated using metagenomic and bioinformatic analyses. After the complete genome of goat rumen microbes was obtained using a shotgun sequencing method, 217,892,109 pair reads were filtered, including only those with 70% identity, 100-bp matches, and thresholds below $E^{-10}$ using METAIDBA. These filtered contigs were assembled and annotated using blastN against the NCBI nucleotide database. As a result, a microbial community structure with 1431 species was analyzed, among which Prevotella ruminicola 23 bacteria and Butyrivibrio proteoclasticus B316 were the dominant groups. In parallel, 201 sequences related with cellulase activities (EC.3.2.1.4) were obtained through blast searches using the enzyme.dat file provided by the NCBI database. After translating the nucleotide sequence into a protein sequence using Interproscan, 28 protein domains with cellulase activity were identified using the HMMER package with threshold E values below $10^{-5}$. Cellulase activity protein domain profiling showed that the major protein domains such as lipase GDSL, cellulase, and Glyco hydro 10 were present in bacterial species with strong cellulase activities. Furthermore, correlation plots clearly displayed the strong positive correlation between some protein domain groups, which was indicative of microbial adaption in the goat rumen based on feeding habits. This is the first metagenomic analysis of cellulase activity protein domains using bioinformatics from the goat rumen.