Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13219

Metagenome Analysis of Protein Domain Collocation within Cellulase Genes of Goat Rumen Microbes  

Lim, SooYeon (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University)
Seo, Jaehyun (Department of Agricultural Science, Korea National Open University)
Choi, Hyunbong (Department of Agricultural Science, Korea National Open University)
Yoon, Duhak (Department of Animal Science, Kyungpook National University)
Nam, Jungrye (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University)
Kim, Heebal (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University)
Cho, Seoae (C&K genomics Inc. 514 Main Bldg., Seoul National University Research Park)
Chang, Jongsoo (Department of Agricultural Science, Korea National Open University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.26, no.8, 2013 , pp. 1144-1151 More about this Journal
Abstract
In this study, protein domains with cellulase activity in goat rumen microbes were investigated using metagenomic and bioinformatic analyses. After the complete genome of goat rumen microbes was obtained using a shotgun sequencing method, 217,892,109 pair reads were filtered, including only those with 70% identity, 100-bp matches, and thresholds below $E^{-10}$ using METAIDBA. These filtered contigs were assembled and annotated using blastN against the NCBI nucleotide database. As a result, a microbial community structure with 1431 species was analyzed, among which Prevotella ruminicola 23 bacteria and Butyrivibrio proteoclasticus B316 were the dominant groups. In parallel, 201 sequences related with cellulase activities (EC.3.2.1.4) were obtained through blast searches using the enzyme.dat file provided by the NCBI database. After translating the nucleotide sequence into a protein sequence using Interproscan, 28 protein domains with cellulase activity were identified using the HMMER package with threshold E values below $10^{-5}$. Cellulase activity protein domain profiling showed that the major protein domains such as lipase GDSL, cellulase, and Glyco hydro 10 were present in bacterial species with strong cellulase activities. Furthermore, correlation plots clearly displayed the strong positive correlation between some protein domain groups, which was indicative of microbial adaption in the goat rumen based on feeding habits. This is the first metagenomic analysis of cellulase activity protein domains using bioinformatics from the goat rumen.
Keywords
Goat Rumen; Shot-gun Sequencing; Metagenome; Protein Domain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brick, D. J., M. J. Brumlik, J. T. Buckley, J.-X. Cao, P. C. Davies, S. Misra, T. J. Tranbarger, and C. Upton. 1995. A new family of lipolytic plant enzymes with members in rice, arabidopsis and maize. FEBS Lett. 377:475-480.   DOI   ScienceOn
2 Bryant, M. P., and N. Small. 1956. The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J. Bacteriol. 72:16-21.
3 Castillo, R. M., K. Mizuguchi, V. Dhanaraj, A. Albert, T. L. Blundell, and A. G. Murzin. 1999. A six-stranded double-psi ${\beta}$ barrel is shared by several protein superfamilies. Structure 7: 227-236.   DOI   ScienceOn
4 Chow, J. M., and J. B. Russell. 1992. Effect of pH and monensin on glucose transport by Fibrobacter succinogenes, a cellulolytic ruminal bacterium. Appl. Environ. Microbiol. 58: 1115-1120.
5 Dominguez, R., H. Souchon, M.-B. Lascombe, and P. M. Alzari. 1996. The crystal structure of a family 5 endoglucanase mutant in complexed and uncomplexed forms reveals an induced fit activation mechanism. J. Mol. Biol. 257:1042-1051.   DOI   ScienceOn
6 Ferrer, M., Olga V. Golyshina, Tatyana N. Chernikova, Amit N. Khachane, Dolores Reyes-Duarte, Vitor A. P. Martins Dos Santos, Carsten Strompl, Kieran Elborough, Graeme Jarvis, Alexander Neef, Michail M. Yakimov, Kenneth N. Timmis, and Peter N. Golyshin. 2005. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ. Microbiol. 7:1996-2010.   DOI   ScienceOn
7 Galagan, J. E., S. E. Calvo, C. Cuomo, L.-J. Ma, J. R. Wortman, S. Batzoglou, S.-I. Lee, M. Bastuerkmen, C. C. Spevak, J. Clutterbuck, V. Kapitonov, J. Jurka, C. Scazzocchio, M. L. Farman, J. Butler, S. Purcell, S. Harris, G. H. Braus, and B. W. Birren. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature. 438:1105-1115.   DOI   ScienceOn
8 Guan, L. L., J. D. Nkrumah, J. A. Basarab, and S. S. Moore. 2008. Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle's feed efficiency. FEMS Microbiol. Lett. 288:85-91.   DOI   ScienceOn
9 Little, E., P. Bork, and R. F. Doolittle. 1994. Tracing the spread of fibronectin type III domains in bacterial glycohydrolases. J. Mol. Evol. 39:631-643.   DOI
10 Lytle, B. L., B. F. Volkman, W. M. Westler, and J. Wu. 2000. Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy. Arch. Biochem. Biophys. 379:237-244.   DOI   ScienceOn
11 McAllister, T. A., H. D. Bae, G. A. Jones, and K-J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018.
12 Molgaard, A., S. Kauppinen, and S. Larsen. 2000. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 8:373-383.   DOI   ScienceOn
13 McKain, N., R. J. Wallace, and N. D. Watt. 1992. Selective isolation of bacteria with dipeptidyl aminopeptidase type I activity from the sheep rumen. FEMS Microbiol. Lett. 95:169-173.   DOI   ScienceOn
14 Mesnage, S., T. Fontaine, T. Mignot, M. Delepierre, M. Mock, and A. Fouet. 2000. Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J. 19:4473-4484.   DOI   ScienceOn
15 Mizuguchi, K., V. Dhanaraj, T. L. Blundell, and A. G. Murzin. 1999. N-ethylmaleimide-sensitive fusion protein (NSF) and CDC48 confirmed as members of the double-psi beta-barrel aspartate decarboxylase/formate dehydrogenase family. Structure (London, England: 1993) 7:R215-R216.   DOI   ScienceOn
16 Moon, C. D., D. M. Pacheco, W. J. Kelly, S. C. Leahy, D. Li, J. Kopecny, and G. T. Attwood. 2008. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Intl J. Syst. Evol. Microbiol. 58:2041-2045.   DOI   ScienceOn
17 Wortman, J. R., J. M. Gilsenan, V. Joardar, J. Deegan, J. Clutterbuck, M. R. Andersen, D. Archer, M. Bencina, G. Braus, P. Coutinho, H. von Dohren, J. Doonan, A. J. Driessen, P. Durek, E. Espeso, E. Fekete, M. Flipphi, C. G. Estrada and G. Turner. 2009. The 2008 update of the Aspergillus nidulans genome annotation: a community effort. Fungal Genet. Biol. 46:S2-13.   DOI   ScienceOn
18 Toyoda, A., W. Iio, M. Mitsumori, and H. Minato. 2009. Isolation and identification of cellulose-binding proteins from sheep rumen contents. Appl. Environ. Microbiol. 75:1667-1673.   DOI   ScienceOn
19 Van Gylswyk, N., and J. Van Der Toorn. 1986. Enumeration of Bacteroides succinogenes in the rumen of sheep fed maize-straw diets. FEMS Microbiol. Lett. 38:205-209.
20 Walker, J. E., J. M. Arizmendi, A. Dupuis, I. M. Fearnley, M. Finel, S. M. Medd, S. J. Pilkington, M. J. Runswick, and J. M. Skehel. 1992. Sequences of 20 subunits of NADH: ubiquinone oxidoreductase from bovine heart mitochondria: Application of a novel strategy for sequencing proteins using the polymerase chain reaction. J. Mol. Biol. 226:1051-1072.   DOI
21 Xu, G.-Y., E. Ong, N. R. Gilkes, D. G. Kilburn, D. Muhandiram, M. Harris-Brandts, J. P. Carver, L. E. Kay, and T. S. Harvey. 1995. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry 34:6993-7009.   DOI   ScienceOn
22 Zhou, J., B. Copeland, C. Zhang, Z. Liu, S. Bhatti, R. Sauve, and S. Zhou. 2011. Identification of prokaryotic organisms in goat rumen based on metagenomic DNA sequences. J. Res. Biol. 6: 451-455.
23 Janssen, R., J. Smeitink, R. Smeets, and L. van den Heuvel. 2002. CIA30 complex I assembly factor: a candidate for human complex I deficiency? Hum. Genet. 110:264-270.   DOI   ScienceOn
24 Alzari, P. M., and R. Dominguez. 1996. The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. Structure 4:265-275.   DOI   ScienceOn
25 Bazan, J. F. 1990. Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. USA 87: 6934-6938.   DOI
26 Hegarty, R. S. 1999. Reducing rumen methane emissions through elimination of rumen protozoa. Aust. J. Agric. Res. 50:1321-1328.   DOI
27 Heinrichova, K., M. Wojciechowicz, and A. Ziolecki. 1989. The pectinolytic enzyme of Selenomonas ruminantium. J. Appl. Microbiol. 66:169-174.   DOI
28 Hess, M., A. Sczyrba, R. Egan, T. W. Kim, H. Chokhawala, G. Schroth, S. Luo, D. S. Clark, F. Chen, T. Zhang, R. I. Mackie, L. A. Pennacchio, S. G. Tringe, A. Visel, T. Woyke, Z. Wang, and E. M. Rubin. 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science (New York, NY) 331:463-467.   DOI   ScienceOn
29 Johnson, P. E., M. D. Joshi, P. Tomme, D. G. Kilburn, and L. P. McIntosh. 1996. Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi CenC determined by nuclear magnetic resonance spectroscopy. Biochemistry 35:14381-14394.   DOI   ScienceOn
30 Kitago, Y., S. Karita, N. Watanabe, M. Kamiya, T. Aizawa, K. Sakka, and I. Tanaka. 2007. Crystal structure of Cel44A, a glycoside hydrolase family 44 endoglucanase from Clostridium thermocellum. J. Biol. Chem. 282:35703-35711.   DOI   ScienceOn
31 Kornblihtt, A. R., K. Umezawa, K. Vibe-Pedersen, and F. Baralle. 1985. Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EMBO J. 4:1755-1759.
32 Kosugi, A., Y. Amano, K. Murashima, and R. H. Doi. 2004. Hydrophilic domains of scaffolding protein CbpA promote glycosyl hydrolase activity and localization of cellulosomes to the cell surface of Clostridium cellulovorans. J. Bacteriol. 186: 6351-6359.   DOI   ScienceOn
33 Krause, D. O., T. G. Nagaraja, A. D. G. Wright, and T. R. Callaway. 2013. Board-invited review: Rumen microbiology: Leading the way in microbial ecology. J. Anim. Sci. 91:331-341.   DOI   ScienceOn
34 Ross, E. M., P. J. Moate, C. R. Bath, S. E. Davidson, T. I. Sawbridge, K. M. Guthridge, B. G. Cocks, and B. J. Hayes. 2012. High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing. BMC Genet. 13:53.
35 Mosbah, A., A. Bela ch, O. Bornet, J.-P. Belaich, B. Henrissat, and H. Darbon. 2000. Solution structure of the module X2_1 of unknown function of the cellulosomal scaffolding protein CipC of Clostridium cellulolyticum. J. Mol. Biol. 304:201-217.   DOI   ScienceOn
36 Peng, Y., Henry C. M. Leung, S. M. Yiu, and Francis Y. L. Chin. 2011. Meta-IDBA: a de Novo assembler for metagenomic data. Bioinformatics 27:i94-i101.   DOI   ScienceOn
37 Poole, D. M., E. Morag, R. Lamed, E. A. Bayer, G. P. Hazlewood, and H. J. Gilbert. 1992. Identification of the cellulose-binding domain of the cellulosome subunit S1 from Clostridium thermocellum YS. FEMS Microbiol. Lett. 99:181-186.   DOI   ScienceOn
38 Shoham, Y., R. Lamed, and E. A. Bayer. 1999. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7:275-281.   DOI   ScienceOn
39 Takase, I., F. Ishino, M. Wachi, H. Kamata, M. Doi, S. Asoh, H. Matsuzawa, T. Ohta, and M. Matsuhashi. 1987. Genes encoding two lipoproteins in the leuS-dacA region of the Escherichia coli chromosome. J. Bacteriol. 169:5692-5699.
40 Tews, I., A. Perrakis, A. Oppenheim, Z. Dauter, K. S. Wilson, and C. E. Vorgias. 1996. Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Nat. Struct. Biol. 3:638-648.   DOI   ScienceOn
41 Tormo, J., R. Lamed, A. J. Chirino, E. Morag, E. A. Bayer, Y. Shoham, and T. A. Steitz. 1996. Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J. 15:5739-5751.