• Title/Summary/Keyword: Rumen Metabolites

Search Result 74, Processing Time 0.03 seconds

In vitro rumen fermentation kinetics, metabolite production, methane and substrate degradability of polyphenol rich plant leaves and their component complete feed blocks

  • Aderao, Ganesh N.;Sahoo, A.;Bhatt, R.S.;Kumawat, P.K.;Soni, Lalit
    • Journal of Animal Science and Technology
    • /
    • v.60 no.11
    • /
    • pp.26.1-26.9
    • /
    • 2018
  • Background: This experiment aimed at assessing polyphenol-rich plant biomass to use in complete feed making for the feeding of ruminants. Methods: An in vitro ruminal evaluation of complete blocks (CFB) with (Acacia nilotica, Ziziphus nummularia leaves) and without (Vigna sinensis hay) polyphenol rich plant leaves was conducted by applying Menke's in vitro gas production (IVGP) technique. A total of six substrates, viz. three forages and three CFBs were subjected to in vitro ruminal fermentation in glass syringes to assess gas and methane production, substrate degradability, and rumen fermentation metabolites. Results: Total polyphenol content (g/Kg) was 163 in A. nilotica compared to 52.5 in Z. nummularia with a contrasting difference in tannin fractions, higher hydrolysable tannins (HT) in the former (140.1 vs 2.8) and higher condensed (CT) tannins in the later (28.3 vs 7.9). The potential gas production was lower with a higher lag phase (L) in CT containing Z. nummularia and the component feed block. A. nilotica alone and as a constituent of CFB produced higher total gas but with lower methane while the partitioning factor (PF) was higher in Z. nummularia and its CFB. Substrate digestibility (both DM and OM) was lower (P < 0.001) in Z. nummularia compared to other forages and CFBs. The fermentation metabolites showed a different pattern for forages and their CFBs. The forages showed higher TCA precipitable N and lower acetate: propionate ratio in Z. nummularia while the related trend was found in CFB with V. sinensis. Total volatile fatty acid concentration was higher (P < 0.001) in A. nilotica leaves than V. sinensis hay and Z. nummularia leaves. It has implication on widening the forage resources and providing opportunity to use forage biomass rich in polyphenolic constituents in judicious proportion for reducing methane and enhancing green livestock production. Conclusion: Above all, higher substrate degradability, propionate production, lower methanogenesis in CFB with A. nilotica leaves may be considered useful. Nevertheless, CFB with Z. nummularia also proved its usefulness with higher TCA precipitable N and PF. It has implication on widening the forage resources and providing opportunity to use polyphenol-rich forage biomass for reducing methane and enhancing green livestock production.

In vitro Nutrient Digestibility, Gas Production and Tannin Metabolites of Acacia nilotica Pods in Goats

  • Barman, K.;Rai, S.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • Six total mixed rations (TMR) containing 0, 4, 6, 8, 10, 12% tannin (TMR I-VI), using Accacia nilotica pods as a source of tannin, were used to study the effect of Acacia tannin on in vitro nutrient digestibility and gas production in goats. This study also investigated the degraded products of Acacia nilotica tannin in goat rumen liquor. Degraded products of tannins were identified using high performance liquid chromatography (HPLC) at different hours of incubation. In vitro digestibility of dry matter (IVDMD) and organic matter (IVOMD) were similar in TMR II, and I, but declined (p<0.05) thereafter to a stable pattern until the concentration of tannin was raised to 10%. In vitro crude protein digestibility (IVCPD) decreased (p<0.05) with increased levels of tannins in the total mixed rations. Crude protein digestibility was much more affected than digestibility of dry matter and organic matter. In vitro gas production (IVGP) was also reduced (p<0.05) with increased levels of tannins in the TMR during the first 24 h of incubation and tended to increase (p>0.05) during 24-48 h of incubation. Gallic acid, phloroglucinol, resorcinol and catechin were identified at different hours of incubation. Phloroglucinol and catechin were the major end products of tannin degradation while gallate and resorcinol were produced in traces. It is inferred that in vitro nutrient digestibility was reduced by metabolites of Acacia nilotica tannins and ruminal microbes of goat were capable of withstanding up to 4% tannin of Acacia nilotica pods in the TMR without affecting in vitro nutrient digestibility.

Effects of reducing inclusion rate of roughages by changing roughage sources and concentrate types on intake, growth, rumen fermentation characteristics, and blood parameters of Hanwoo growing cattle (Bos Taurus coreanae)

  • Jeon, Seoyoung;Jeong, Sinyong;Lee, Mingyung;Seo, Jakyeom;Kam, Dong Keun;Kim, Jeong Hoon;Park, Jaehwa;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1705-1714
    • /
    • 2019
  • Objective: Reducing roughage feeding without negatively affecting rumen health is of interest in ruminant nutrition. We investigated the effects of roughage sources and concentrate types on growth performance, ruminal fermentation, and blood metabolite levels in growing cattle. Methods: In this 24-week trial, 24 Hanwoo cattle ($224{\pm}24.7kg$) were fed similar nitrous and energy levels of total mixed ration formulated using two kinds of roughage (timothy hay and ryegrass straw) and two types of concentrate mixes (high starch [HS] and high fiber [HF]). The treatments were arranged in a $2{\times}2$ factorial, consisting of 32% timothy-68% HS, 24% timothy-76% HF, 24% ryegrass-76% HS, and 17% ryegrass-83% HF. Daily feed intakes were measured. Every four weeks, blood were sampled, and body weight was measured before morning feeding. Every eight weeks, rumen fluid was collected using a stomach tube over five consecutive days. Results: The mean dry matter intake (7.33 kg) and average daily gain (1,033 g) did not differ among treatments. However, significant interactions between roughage source and concentrate type were observed for the rumen and blood parameters (p<0.05). Total volatile fatty acid concentration was highest (p<0.05) in timothy-HF-fed calves. With ryegrass as the roughage source, decreasing the roughage inclusion rate increased the molar proportion of propionate and decreased the acetate-to-propionate ratio; the opposite was observed with timothy as the roughage source. Similarly, the effects of concentrate types on plasma total protein, alanine transaminase, Ca, inorganic P, total cholesterol, triglycerides, and creatinine concentrations differed with roughage source (p<0.05). Conclusion: Decreasing the dietary roughage inclusion rate by replacing forage neutral detergent fiber with that from non-roughage fiber source might be a feasible feeding practice in growing cattle. A combination of low-quality roughage with a high fiber concentrate might be economically beneficial.

Effects of ambient temperature and rumen-protected fat supplementation on growth performance, rumen fermentation and blood parameters during cold season in Korean cattle steers

  • Kang, Hyeok Joong;Piao, Min Yu;Park, Seung Ju;Na, Sang Weon;Kim, Hyun Jin;Baik, Myunggi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.657-664
    • /
    • 2019
  • Objective: This study was performed to evaluate whether cold ambient temperature and dietary rumen-protected fat (RPF) supplementation affect growth performance, rumen fermentation, and blood parameters in Korean cattle steers. Methods: Twenty Korean cattle steers (body weight [BW], $550.6{\pm}9.14kg$; age, $19.7{\pm}0.13months$) were divided into a conventional control diet group (n = 10) and a 0.5% RPF supplementation group (n = 10). Steers were fed a concentrate diet (1.6% BW) and a rice straw diet (1 kg/d) for 16 weeks (January 9 to February 5 [P1], February 6 to March 5 [P2], March 6 to April 3 [P3], and April 4 to May 2 [P4]). Results: The mean and minimum indoor ambient temperatures in P1 ($-3.44^{\circ}C$, $-9.40^{\circ}C$) were lower (p<0.001) than those in P3 ($5.87^{\circ}C$, $-1.86^{\circ}C$) and P4 ($11.18^{\circ}C$, $4.28^{\circ}C$). The minimum temperature in P1 fell within the moderate cold-stress (CS) category, as previously reported for dairy cattle, and the minimum temperatures of P2 and P3 were within the mild CS category. Neither month nor RPF supplementation affected the average daily gain or gain-to-feed ratio (p>0.05). Ruminal ammonia nitrogen concentrations were higher (p<0.05) in cold winter than spring. Plasma cortisol concentrations were lower (p<0.05) in the coldest month than in the other months. Serum glucose concentrations were generally higher in colder months than in the other months but were unaffected by RPF supplementation. RPF supplementation increased both total cholesterol (p = 0.004) and high-density lipoprotein (HDL) concentrations (p = 0.03). Conclusion: Korean cattle may not be significantly affected by moderate CS, considering that the growth performance of cattle remained unchanged, although variations in blood parameters were observed among the studied months. RPF supplementation altered cholesterol and HDL concentrations but did not affect growth performance.

Effects of CNCPS fraction-enriched proteins on ruminal fermentation and plasma metabolites in holstein steers fed TMR containing low protein (저단백질 TMR을 기초사료로 급여한 홀스타인 거세우에 있어서 CNCPS fraction별 고함유 단백질 공급이 반추위 발효패턴 및 혈액대사물질에 미치는 영향)

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Four ruminally cannulated Holstein steers (BW $401.0{\pm}2.22kg$) fed TMR containing low protein (CP 9.63 %) as a basal diet were used to investigate the effects of cornell net carbohydrates and protein system (CNCPS) fraction enriched protein feeds on rumen fermentation and blood metabolites. The steers used in a $4{\times}4$ Latin square design consumed TMR only (control), TMR with rapeseed meal (AB1), TMR with soybean meal (B2) and TMR with perilla meal (B3C), respectively. The protein feeds were substituted for 30 % crude protein of TMR intake. For measuring ruminal pH, ammonia-N and volatile fatty acids (VFA), ruminal digesta was sampled through ruminal cannula at 1 h-interval after the afternoon feeding. Blood was sampled via the jugular vein after the ruminal digesta sampling. Different CNCPS fraction-enriched proteins did not affect (p>0.05) ruminal pH except B3C being numerically low compared with the other groups. Ammonia-N and VFA were not significantly different among the experimental groups. Numerically low ammonia-N appeared in the steers fed rapeseed meal even though it contained high soluble N composition (A and B1 fractions). The discrepancy is unclear; however this may be related to low protein level in the diet and/or low DM intake. Blood metabolites were not significantly affected by the protein substitution except for blood urea nitrogen that was significantly (p<0.05) increased.

Effects of Forage:Concentrate Ratio on Growth Performance, Ruminal Fermentation and Blood Metabolites in Housing-feeding Yaks

  • Chen, G.J.;Song, S.D.;Wang, B.X.;Zhang, Z.F.;Peng, Z.L.;Guo, C.H.;Zhong, J.C.;Wang, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1736-1741
    • /
    • 2015
  • The objective of this study was to determine the effect of forage: concentrate ratio (F:C) on growth performance, ruminal fermentation and blood metabolites of housing-feeding yaks. Thirty-two Maiwa male yaks (initial body weight = $207.99{\pm}3.31kg$) were randomly assigned to four dietary treatments (8 yaks per treatment). Experimental diets were: A, B, C, D which contained 70:30, 60:40, 50:50 and 40:60 F:C ratios, respectively. Dry matter intake and average daily gain in yaks fed the C and D diets were greater (p<0.05) than yaks fed the A and B diets. No differences were found in ruminal $NH_3-N$, total volatile fatty acids, acetate, butyrate, valerate, and isovalerate concentrations. The propionate concentration was increased (p<0.05) in the C and D groups compared with the A and B diets. In contrast, the acetate to propionate ratio was decreased and was lowest (p<0.05) in the C group relative to the A and B diets, but was similar with the D group. For blood metabolites, no differences were found in serum concentrations of urea-N, albumin, triglyceride, cholesterol, low density lipoprotein, alanine aminotransferase, and aspartate aminotransferase (p>0.05) among treatments. Treatment C had a higher concentration of total protein and high density lipoprotein (p<0.05) than A and B groups. In addition, there was a trend that the globulin concentration of A group was lower than other treatments (p = 0.079). Results from this study suggest that increasing the level of concentrate from 30% to 50% exerted a positive effect on growth performance, rumen fermentation and blood metabolites in yaks.

Effects of Isopropyl Alcohol Infusions on the Ruminating Behavior of Goats

  • Asato, N.;Hirata, T.;Hirayama, T.;Onodera, R.;Shinjo, A.;Oshiro, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.8
    • /
    • pp.1085-1089
    • /
    • 2001
  • Metabolites, such as isopropyl alcohol (IPA) produced by rumen fermentation, were intravenously infused into a jugular vein of goats during feeding to explore the mechanism and roles of IPA in ruminating behavior (number of boli and ruminating time). Three female goats were confined in metabolism cages with a stanchion, The ruminating behavior measured by the number of ruminations, ruminating time, number of remastications, and remasticating time decreased (p<0,05) with intravenous IPA infusion. The IPA concentrations and VFA concentrations increased in the blood circulation. Our data suggest that sensitive receptors of rumination to IPA are more likely to be in an area such as the brain stem where they can respond to blood metabolite levels.

Nutritional Evaluation of Two Promising Varieties of Forage Sorghum in Sheep Fed as Silage

  • Mahanta, S.K.;Pachauri, V.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1715-1720
    • /
    • 2005
  • Two promising varieties of forage sorghum viz. HD-15 and J. Sel-10 were identified for their higher forage yield (350-400 quintals per hectare) compared to traditional/existing variety, HC-136 at Indian Grassland and Fodder Research Institute, Jhansi. Silage of these three forage sorghum varieties viz., HD-15, J.Sel-10 and HC-136 were prepared in three concrete silos for their nutritional evaluation in sheep. Twelve adult Muzaffarnagari Ewes, divided into three equal groups of 4 each, were offered a particular variety of sorghum silage ad libitum over a period of 30 days followed by a 6 day metabolism trial and a collection of rumen liquor and blood samples. The HD-15 variety of forage sorghum silage contained higher crude protein (CP) than both the J.Sel-10 and HC-136. Average daily dry matter (DM) intake (% of live weight) differed significantly (p<0.05) in sheep that were fed the different varieties of silage, with the maximum amount in HD-15 (2.55) followed by J.Sel-10 (2.49) and HC-136 (1.84). The average apparent digestibility of all the nutrients was low in the sheep that were fed the HC-136 variety of sorghum silage when compared to both HD-15 and J.Sel-10. However, digestibility of organic matter (p<0.05) and crude protein (p<0.01) was significantly low in the HC-136 variety. The average daily nitrogen retention was-0.19, 2.15 and 0.42 g in HC-136, HD-15 and J.Sel-10, respectively which differed significantly (p<0.01). The average digestible crude protein and total digestible nutrient (TDN) contents (%) of the silage varieties were higher in HD-15 (3.14 and 55.3) than HC-136 (0.25 and 58.6) and J.Sel-10 (1.58 and 55.3) varieties. On comparing to the maintenance requirements (ICAR, 1985) for dry matter, crude protein and total digestible nutrients, both the improved varieties (HD-15 and J.Sel-10) almost met the requirements except crude protein, which met only 73.3% of the requirement by J.Sel-10, while the HC-136 variety was unable to meet the requirements. The average rumen pH and total volatile fatty acids concentrations were comparable among the groups. However, concentrations of nitrogen metabolites were higher in the animals fed the HD-15 variety of silage. Varieties of sorghum silage also did not have any influence on the concentration of the blood metabolites. It was concluded that the HD-15 variety of sorghum silage was nutritionally superior to both J.Sel-10 and HC-136 silage.

Effect of extrusion of soybean meal on feed spectroscopic molecular structures and on performance, blood metabolites and nutrient digestibility of Holstein dairy calves

  • Berenti, Ammar Mollaei;Yari, Mojtaba;Khalaji, Saeed;Hedayati, Mahdi;Akbarian, Amin;Yu, Peiqiang
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.855-866
    • /
    • 2021
  • Objective: Performance and physiological responses of dairy calves may change by using extruded soybean meal (ESBM) instead of common soybean meal (SBM) in starter feed. The aims of the current study were i) to determine the effect of extrusion processing of SBM on protein electrophoretic size, fourier transform infrared spectroscopy (FTIR) structures and Cornell Net Carbohydrate and Protein System (CNCPS) protein subfractions and ii) to determine the effect of substitution of SBM with ESBM in starter feed of Holstein heifer calves during pre and post-weaning on performance, nutrient digestibility, and blood metabolites. Methods: The SBM was substituted with ESBM at the level of 0%, 25%, 50%, 75%, and 100% (dry matter [DM] basis). Fifty heifer calves (initial body weight 40.3±0.63 kg) were used for the study. After birth, animals were fed colostrum for 3 days and then they were fed whole milk until weaning. Animals had free access to starter feed and water during the study. Results: Extrusion of SBM decreased electrophoretic protein size and increased rapidly degradable true protein fraction, changed FTIR protein and amide II region. With increasing level of ESBM in the diet, starter intake increased quadratically during the pre-weaning period (p<0.05) and body weight, DM intake and average daily gain increased linearly during the post-weaning and the whole study period (p<0.05). Tbe DM and crude protein digestibilities at week 14 and blood glucose and beta hydroxybutyric acid increased linearly in calves as the level of ESBM increased in the diet (p<0.05). Conclusion: Dairy calves performance and physiological responses were sensitive to SBM protein characteristics including electrophoretic size, FTIR structures and CNCPS protein fractions.

Effects of Lonicera japonica extract on performance, blood biomarkers of inflammation and oxidative stress during perinatal period in dairy cows

  • Zhao, Yiguang;Tang, Zhiwen;Nan, Xuemei;Sun, Fuyu;Jiang, Linshu;Xiong, Benhai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1096-1102
    • /
    • 2020
  • Objective: An experiment was conducted to evaluate the effects of Lonicera japonica extract (LJE) on milk production, rumen fermentation and blood biomarkers of energy metabolism, inflammation and oxidative stress during the perinatal period of Holstein dairy cows. Methods: Eighteen Holstein dairy cows were used in a complete randomized design experiment with 3 dietary treatments and 6 cows per treatment. All cows received the same basal total mixed ration (TMR) including a prepartal diet (1.35 Mcal of net energy for lactation [NEL]/kg of dry matter [DM], 13.23% crude protein [CP]) from -60 d to calving and a postpartal diet (1.61 Mcal of NEL/kg of DM, 17.39% CP) from calving to 30 days in milk (DIM). The 3 dietary treatments were TMR supplemented with LJE at 0 (control), 1 and 2 g/kg DM, respectively. LJE was offered from 21 d before calving to 30 DIM. Dry matter intake (DMI) and milk production were measured daily after calving. Milk and rumen fluid samples were collected on 29 and 30 d after calving. On -10, 4, 14, and 30 d relative to calving, blood samples were collected to analyze the biomarkers of energy metabolism, inflammation and oxidative stress. Results: Compared with control diet, LJE supplementation at 1 and 2 g/kg DM increased DMI, milk yield and reduced milk somatic cell count. LJE supplementation also decreased the concentrations of blood biomarkers of pro-inflammation (interleukin-1β [IL-1β], IL-6, and haptoglobin), energy metabolism (nonesterified fatty acid and β-hydroxybutyric acid) and oxidative stress (reactive oxygen metabolites), meanwhile increased the total antioxidant capacity and superoxide dismutase concentrations in blood. No differences were observed in rumen pH, volatile fatty acid, and ammonia-N (NH3-N) concentrations between LJE supplemented diets and the control diet. Conclusion: Supplementation with 1 and 2 g LJE/kg DM could increase DMI, improve lactation performance, and enhance anti-inflammatory and antioxidant capacities of dairy cows during perinatal period.