• Title/Summary/Keyword: Rumen Fermentation Pattern

Search Result 47, Processing Time 0.021 seconds

Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants

  • Haque, Md Najmul
    • Journal of Animal Science and Technology
    • /
    • v.60 no.6
    • /
    • pp.15.1-15.10
    • /
    • 2018
  • Methane emission from the enteric fermentation of ruminant livestock is a main source of greenhouse gas (GHG) emission and a major concern for global warming. Methane emission is also associated with dietary energy lose; hence, reduce feed efficiency. Due to the negative environmental impacts, methane mitigation has come forward in last few decades. To date numerous efforts were made in order to reduce methane emission from ruminants. No table mitigation approaches are rumen manipulation, alteration of rumen fermentation, modification of rumen microbial biodiversity by different means and rarely by animal manipulations. However, a comprehensive exploration for a sustainable methane mitigation approach is still lacking. Dietary modification is directly linked to changes in the rumen fermentation pattern and types of end products. Studies showed that changing fermentation pattern is one of the most effective ways of methane abatement. Desirable dietary changes provide two fold benefits i.e. improve production and reduce GHG emissions. Therefore, the aim of this review is to discuss biology of methane emission from ruminants and its mitigation through dietary manipulation.

Blood Biochemical Profile and Rumen Fermentation Pattern of Goats Fed Leaf Meal Mixture or Conventional Cakes as Dietary Protein Supplements

  • Anbarasu, C.;Dutta, Narayan;Sharma, K.;Naulia, Uma
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.665-670
    • /
    • 2002
  • The expediency of replacing cost prohibitive and often inaccessible traditional protein supplements prompted the monitoring of hematological parameters was carried out in female goats at 0, 30, 60 and 90 days post feeding. Rumen environment was (3), respectively fed supplements containing either a leaf meal mixture (LMTM) of Leucaena leucocephala-Morus alba-Tectona grandis (2:1:1) or traditional protein supplements groundnut cake (GNC) or soybean meal (SBM) and wheat straw as basal diet. The periodic monitoring of hematological parameters was carried out in female goats at 0, 30, 60 and 90 days post feeding. Rumen environment was studied in bucks in a $3{\times}3$ switch over design. Rumen liquor was collected at 0, 2, 4, 6 and 8 h post feeding after 4 weeks of feeding. The goats fed on LMTM or GNC had similar dry matter intake (g/kg $W^{0.75}$), which was significantly (p<0.05) higher than SBM. Except for packed cell volume (PCV), none of the blood biochemical constituents (Hemoglobin, serum glucose, total protein, serum albumin (A) and globulin(G), A:G ratio, alkaline phosphatase, transaminases) varied significantly due to replacement of 50% dietary protein by LMTM throughout the experiment. GNC group had significantly higher level of PCV than other treatments. However, the level of serum total protein (p<0.01) tended to increase from 60th day onwards irrespective of dietary treatments. The average rumen pH was significantly higher (p<0.001) on SBM followed by LMTM and GNC, respectively. Total volatile fatty acid (TVFA) production was comparable in goats given LMTM or GNC supplements, the corresponding values were significantly different (p<0.001) when compared with SBM. The ammonical-N, total-N and TCA-precipitable-N (mg/100 ml SRL) did not differ significantly among dietary treatments. It may be concluded that supplementing wheat straw with LMTM based concentrate had no adverse effect on voluntary intake, blood biochemical profile and rumen fermentation pattern of the goats.

Effect of Different Source of Energy on Urea Molasses Mineral Block Intake, Nutrient Utilization, Rumen Fermentation Pattern and Blood Profile in Murrah Buffaloes (Bubalus bubalis)

  • Hosamani, S.V.;Mehra, U.R.;Dass, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.818-822
    • /
    • 2003
  • In order to investigate the effect of different sources of energy on intake and nutrient utilization from urea molasses mineral block (UMMB), rumen fermentation pattern and blood biochemical constituents, 18 intact and 9 rumen fistulated male Murrah buffaloes aged about 3 years and average weight 310.8 kg were randomly allocated into three groups of 9 animals in each, thus each group having 6 intact and three rumen fistulated buffaloes. All animals were fed individually for 90 days. All buffaloes were offered wheat straw as basal roughage and urea molasses mineral block for free choice of licking. Three different energy sources viz., barley grain, (group I), maize grain (group II) and jowar green (group III) were offered to meet their nutrient requirement as per Kearl (1982). At the end of feeding trial, a metabolism trial of 7 days duration was carried out on intact animals to determine the digestibility of nutrients. Rumen fermentation studies were carried out on rumen fistulated animals. After the metabolism trial blood was collected from intact animals to estimate the nitrogen constituents in blood serum of animals fed on different sources of energy. Results revealed no significant difference in the intake of UMMB in three groups. Similarly, the intake of DM (kg), DCP (g) and TDN (kg) per day was similar in three groups statistically. The apparent digestibility of dry matter (DM), organic matter (OM), ether extract (EE) and nitrogen free extract (NFE) was significantly (p<0.05) more in group II than group III, whereas the digestibility of DM, OM and NFE was similar in group I and II. The digestibility of crude fiber (CF) and all the fiber fractions i.e. NDF, ADF, cellulose and hemicellulose was alike in 3 groups. Nitrogen balance (g/d) was significantly (p<0.05) more in group III as compared to group I and II, which were alike statistically, though the N intake (g/d) was similar in 3 groups but N balance (g/d) was significantly (p<0.05) less in group III as compared to other 2 groups. Significantly (p<0.05) higher concentration of total volatile fatty acids (TVFA), total nitrogen (TN) and its fractions were observed in group I and II as compared to group III. There was no effect on rumen pH, rumen volume and digesta flow rate due to different sources of energy in 3 groups. Similarly the blood serum biochemical parameters (NH3-N, urea-N and total protein) were statistically identical in 3 groups.

Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production

  • Nguyen, S.H.;Li, L.;Hegarty, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.807-813
    • /
    • 2016
  • Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as $NaNO_3$) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary nitrate as the addition of nitrate in the defaunated heifers resulted in 86% reduction in methane production in vitro.

Effects of feeding different levels of dietary corn silage on growth performance, rumen fermentation and bacterial community of post-weaning dairy calves

  • Lingyan Li;Jiachen Qu;Huan Zhu;Yuqin Liu;Jianhao Wu;Guang Shao;Xianchao Guan;Yongli Qu
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.261-273
    • /
    • 2024
  • Objective: The objective of this study was to evaluate the growth performance, rumen fermentation parameters and bacterial community of post-weaning dairy calves in response to five diets varying in corn silage (CS) inclusion. Methods: A total of forty Holstein weaned bull calves (80±3 days of age;128.2±5.03 kg at study initiation) were randomized into five groups (8 calves/group) with each receiving one of five dietary treatments offered as total mixed ration in a 123-d feeding study. Dietary treatments were control diet (CON; 0% CS dry matter [DM]); Treatment 1 (T1; 27.2% CS DM); Treatment 2 (T2; 46.5% CS DM); Treatment 3 (T3; 54.8% CS DM); and Treatment 4 (T4; 67.2% CS DM) with all diets balanced for similar protein and energy concentration. Results: Results showed that calves offered CS had greater average daily gain, body length and chest depth growth, meanwhile altered rumen fermentation indicated by decreased rumen acetate concentrations. Principal coordinate analysis showed the rumen bacterial community structure was affected by varying CS inclusion diets. Bacteroidetes and Firmicutes were the predominant bacterial phyla in the calf rumens across all treatments. At the genus level, the abundance of Bacteroidales_RF16_group was increased, whereas Unclassified_Lachnospiraceae was decreased for calves fed CS. Furthermore, Spearman's correlation test between the rumen bacteria and rumen fermentation parameters indicated that Bacteroidales_RF16_group and Unclassified Lachnospiraceae were positively correlated with propionate and acetate, respectively. Conclusion: The results of the current study suggested that diet CS inclusion was beneficial for post-weaning dairy calf growth, with 27.2% to 46.5% CS of diet DM recommended to achieve improved growth performance. Bacteroidales_RF16_group and Unclassified Lachnospiraceae play an important role in the rumen fermentation pattern for post-weaning calves fed CS.

Ruminal pH pattern, fermentation characteristics and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle

  • Zhang, Xiangfei;Dong, Xianwen;Wanapat, Metha;Shah, Ali Mujtaba;Luo, Xiaolin;Peng, Quanhui;Kang, Kun;Hu, Rui;Guan, Jiuqiang;Wang, Zhisheng
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.184-195
    • /
    • 2022
  • Objective: In this study we aimed to evaluate the effect of dietary live yeast supplementation on ruminal pH pattern, fermentation characteristics and associated bacteria in beef cattle. Methods: This work comprised of in vitro and in vivo experiments. In vitro fermentation was conducted by incubating 0%, 0.05%, 0.075%, 0.1%, 0.125%, and 0.15% active dried yeast (Saccharomyces cerevisiae, ADY) with total mixed ration substrate to determine its dose effect. According to in vitro results, 0.1% ADY inclusion level was assigned in in vivo study for continuously monitoring ruminal fermentation characteristics and microbes. Six ruminally cannulated steers were randomly assigned to 2 treatments (Control and ADY supplementation) as two-period crossover design (30-day). Blood samples were harvested before-feeding and rumen fluid was sampled at 0, 3, 6, 9, and 12 h post-feeding on 30 d. Results: After 24 h in vitro fermentation, pH and gas production were increased at 0.1% ADY where ammonia nitrogen and microbial crude protein also displayed lowest and peak values, respectively. Acetate, butyrate and total volatile fatty acids concentrations heightened with increasing ADY doses and plateaued at high levels, while acetate to propionate ratio was decreased accordingly. In in vivo study, ruminal pH was increased with ADY supplementation that also elevated acetate and propionate. Conversely, ADY reduced lactate level by dampening Streptococcus bovis and inducing greater Selenomonas ruminantium and Megasphaera elsdenii populations involved in lactate utilization. The serum urea nitrogen decreased, whereas glucose, albumin and total protein concentrations were increased with ADY supplementation. Conclusion: The results demonstrated dietary ADY improved ruminal fermentation dose-dependently. The ruminal lactate reduction through modification of lactate metabolic bacteria could be an important reason for rumen pH stabilization induced by ADY. ADY supplementation offered a complementary probiotics strategy in improving gluconeogenesis and nitrogen metabolism of beef cattle, potentially resulted from optimized rumen pH and fermentation.

In vitro Methanogenesis and Fermentation of Feeds Containing Oil Seed Cakes with Rumen Liquor of Buffalo

  • Kumar, Ravindra;Kamra, D.N.;Agarwal, Neeta;Chaudhary, L.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1196-1200
    • /
    • 2007
  • Eight feeds (mixture of wheat straw and oil seed cakes in 3:1 ratio) were evaluated for methane emission and fermentation pattern with buffalo rumen liquor as inoculum in an in vitro gas production test. The cakes tested were groundnut cake (GNC), soybean cake (SBC), mustard seed cake (MSC), cotton seed cake (CSC), karanj seed cake expeller extracted (KCEE), karanj seed cake solvent extracted (KCSE), caster bean cake expeller extracted (CBCEE) and caster bean cake solvent extracted (CBCSE). The gas production (ml/g dry matter) was significantly higher with SBC and MSC followed by CSC, GNC, KCSE, KCEE, CBCSE and was the lowest with CBCEE. Methane emission was significantly lower with KCEE, KCSE, CBCEE, CBCSE (20.32- 22.43 ml/g DM) than that with SBC, GNC, CSC (27.34-31.14 ml/g DM). Mustard seed cake was in-between the two groups of oil cakes in methane production. In vitro true digestibility was highest with SBC followed by GNC, CSC, MSC, KCSE, KCEE, CBCSE and CECEE. Ammonia nitrogen level was positively correlated with the amount of protein present in the cake. Total holotrich protozoa were significantly higher with SBC, whereas, large spirotrich protozoa tended to be lower than with other cakes. The counts of small spirotrich and total protozoa were similar with all the cakes. Total volatile fatty acid production and acetate to propionate ratio were significantly higher with SBC and significantly lower with KCEE as compared to the other cakes. Among the conventional oil cakes tested in the present experiment (GNC, SBC, MSC and CSC), mustard seed cake-based feed produced the minimum methane without affecting other fermentation characteristics adversely.

Effects of Feeding High- and Low- Forage Diets Containing Different Forage Sources on Rumen Fermentation Characteristics and Blood Parameters in Non-Pregnant Dry Holstein Cows

  • Peng, Jing Lun;Kim, Byong Wan;Lee, Bae Hun;Nejad, Jalil Ghassemi;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This research was conducted to investigate the effects of feeding high and low forage diets with different forage sources on rumen fermentation characteristics and blood parameters of Holstein cows during the dry period. Eight Holstein cows were completely randomized assigned to two groups and repeated measurement was utilized in the analysis. Cows in two treatments were fed with diets with high (F:C = 70:30, 70F; forage source: mixed-sowing whole crop barley and Italian ryegrass silage, BIRG) and low (F:C = 55:45, 55F; forage source: tall fescue hay, TF) forage level. Rumen fluid pH was higher in 70F group. Levels of acetic acid, propionic acid, and butyric acid showed a similar pattern: from the lowest value at 07:30 h to the highest at 10:30 h and then decreased in both groups. The ratio of acetic acid to propionic acid was significantly higher (p < 0.05) in 55F group at 09:30 and 10:30 h. Rumen fluid $NH_3-N$ concentrations were significantly higher (p < 0.05) in 70F group at 09:30 and 10:30 h. Blood urea nitrogen was significantly higher (p < 0.05) in 70F group. It was concluded that BIRG based diet with a high forage level had no adverse effects on rumen fermentation, some blood chemical parameters, and immune system in dry Holstein cows and could be used as a forage source instead of imported TF.

Potency of cashew nut shell liquid in rumen modulation under different dietary conditions and indication of its surfactant action against rumen bacteria

  • Oh, Seongjin;Suzuki, Yasuyuki;Hayashi, Shusuke;Suzuki, Yutaka;Koike, Satoshi;Kobayashi, Yasuo
    • Journal of Animal Science and Technology
    • /
    • v.59 no.11
    • /
    • pp.27.1-27.7
    • /
    • 2017
  • Background: Cashew nut shell liquid (CNSL) is an agricultural byproduct containing alkylphenols that has been shown to favorably change the rumen fermentation pattern only under experimentally fixed feeding conditions. Investigation of CNSL potency in rumen modulation under a variety of feeding regimens, and evidence leading to the understanding of CNSL action are obviously necessary for further CNSL applications. The objective of this study was to evaluate the potency of CNSL for rumen modulation under different dietary conditions, and to visually demonstrate its surfactant action against selected rumen bacteria. Methods: Batch culture studies were carried out using various diets with 5 different forage to concentrate (F:C) ratios (9:1, 7:3, 5:5. 3:7 and 1:9). Strained rumen fluid was diluted with a buffer and incubated with each diet. Gas and short chain fatty acid (SCFA) profiles were characterized after 18 h incubation at $39^{\circ}C$. Monensin was also evaluated as a reference additive under the same conditions. Four species of rumen bacteria were grown in pure culture and exposed to CNSL to determine their morphological sensitivity to the surfactant action of CNSL. Results: CNSL supplementation decreased total gas production in diets with 5:5 and 3:7 F:C ratios, whereas the F:C ratio alone did not affect any gas production. Methane decrease by CNSL addition was more apparent in diets with 5:5, 3:7, and 1:9 F:C ratios. An interactive effect of CNSL and the F:C ratio was also observed for methane production. CNSL supplementation enhanced propionate production, while total SCFA production was not affected. Monensin decreased methane production but only in a diet with a 1:9 F:C ratio with increased propionate. Studies of pure cultures indicated that CNSL damaged the cell surface of hydrogen- and formate-producing bacteria, but did not change that of propionate-producing bacteria. Conclusion: CNSL can selectively inhibit rumen bacteria through its surfactant action to lead fermentation toward less methane and more propionate production. As CNSL is effective over a wider range of dietary conditions for such modulation of rumen fermentation in comparison with monensin, this new additive candidate might be applied to ruminant animals for various production purposes and at various stages.

Development of Appropriate Fibrolytic Enzyme Combination for Maize Stover and Its Effect on Rumen Fermentation in Sheep

  • Bhasker, T. Vijay;Nagalakshmi, D.;Rao, D. Srinivasa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.945-951
    • /
    • 2013
  • In vitro studies were undertaken to develop an appropriate fibrolytic enzymes cocktail comprising of cellulase, xylanase and ${\beta}$-D-glucanase for maize stover with an aim to increase its nutrient utilization in sheep. Cellulase and xylanase added individually to ground maize stover at an increasing dose rates (0, 100, 200, 400, 800, 1,600, 3,200, 6,400, 12,800, 25,600, 32,000, 38,400, and 44,800 IU/g DM), increased (p<0.01) the in vitro dry matter digestibility and in vitro sugar release. The doses selected for studying the combination effect of enzymes were 6,400 to 32,000 IU/g of cellulase and 12,800 to 44,800 IU/g of xylanase. At cellulase concentration of 6,400 IU/g, IVDMD % was higher (p<0.01) at higher xylanase doses (25,600 to 44,800 IU/g). While at cellulase doses (12,800 to 32,000 IU/g), IVDMD % was higher at lower xylanase doses (12,800 and 25,600 IU/g) compared to higher xylanase doses (32,000 to 44,800 IU/g). At cellulase concentration of the 6,400 to 32,000 IU/g, the amount of sugar released increased (p<0.01) with increasing levels of xylanase concentrations except for the concentration of 44,800 IU/g. No effect of ${\beta}$-D-glucanase (100 to 300 IU/g) was observed at lower cellulase-xylanase dose (cellulase-xylanase 12,800 to 12,800 IU/g). Based on the IVDMD, the enzyme combination cellulase-xylanase 12,800 to 12,800 IU/g was selected to study its effect on feed intake and rumen fermentation pattern, conducted on 12 rams (6 to 8 months; $20.34{\pm}2.369$ kg body weight) fed 50% maize stover based TMR. The total volatile fatty acids (p<0.01) and ammonia-N concentration was higher in enzyme supplemented group, while no effect was observed on dry matter intake, ruminal pH and total nitrogen concentration.