• 제목/요약/키워드: Rumen Enzyme

검색결과 74건 처리시간 0.022초

Effects of Enzyme Application Method and Levels and Pre-treatment Times on Rumen Fermentation, Nutrient Degradation and Digestion in Goats and Steers

  • Hong, S.H.;Lee, B.K.;Choi, N.J.;Lee, Sang S.;Yun, S.G.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권3호
    • /
    • pp.389-393
    • /
    • 2003
  • Present study investigate the effect of enzyme supplementation, methods (applied to rumen or enzyme treated diet) compared with no enzyme diet, on rumen fermentation and apparent nutrient digestibility in a $3{\times}3$ Latin square design with three rumen cannulated Korean Native goats. In situ rumen degradation kinetics was studied in three rumen cannulated Holstein steers. Three diets were, no enzyme, 1% enzyme in rumen and 1% enzyme in diet. The enzyme was sprayed onto forage, and the forage: concentrate ratio was 30:70. Degradation kinetics was studied with three enzyme levels (0, 1 and 2%, w/w) and four pre-treatment times (0, 1, 12 and 24 h). Results suggested that enzyme application method did not affect rumen fermentation, ruminal enzyme activity and total tract apparent digestibility. Nutrient degradation rate and effective degradability of DM, NDF and ADF increased with increasing enzyme level and pre-treatment times. Degradation of nutrients was affected by enzymes levels or pre-treatment times. Therefore, it is probable that the improved degradation may be due to the supplemented exogenous hydrolytic enzymes under a certain condition.

Molecular cloning, expression and characterization of a novel feruloyl esterase enzyme from the symbionts of termite (Coptotermes formosanus) gut

  • Chandrasekharaiah, Matam;Thulasi, Appoothy;Bagath, M.;Kumar, Duvvuri Prasanna;Santosh, Sunil Singh;Palanivel, Chenniappan;Jose, Vazhakkala Lyju;Sampath, K.T.
    • BMB Reports
    • /
    • 제44권1호
    • /
    • pp.52-57
    • /
    • 2011
  • Termites play an important role in the degradation of dead plant materials and have acquired endogenous and symbiotic cellulose digestion capabilities. The feruloyl esterase enzyme (FAE) gene amplified from the metagenomic DNA of Coptotermes formosanus gut was cloned in the TA cloning vector and subcloned into a pET32a expression vector. The Ft3-7 gene has 84% sequence identity with Clostridium saccharolyticum and shows amino acid sequence identity with predicted xylanase/chitin deacetylase and endo-1,4-beta-xylanase. The sequence analysis reveals that probably Ft3-7 could be a new gene and that its molecular mass was 18.5 kDa. The activity of the recombinant enzyme (Ft3-7) produced in Escherichia coli (E.coli) was 21.4 U with substrate ethyl ferulate and its specific activity was 24.6 U/mg protein. The optimum pH and temperature for enzyme activity were 7.0 and $37^{\circ}C$, respectively. The substrate utilization preferences and sequence similarity of the Ft3-7 place it in the type-D sub-class of FAE.

The Rumen Ecosystem : As a Fountain Source of Nobel Enzymes - Review -

  • Lee, S.S.;Shin, K.J.;Kim, W.Y.;Ha, J.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권6호
    • /
    • pp.988-1001
    • /
    • 1999
  • The rumen ecosystem is increasingly being recognized as a promising source of superior polysaccharide-degrading enzymes. They contain a wide array of novel enzymes at the levels of specific activities of 1,184, 1,069, 119, 390, 327 and $946{\mu}mol$ Reducing sugar release/min/mg protein for endoglucanase, xylanase, polygalactouronase, amylase, glucanase and arabinase, respectively. These enzymes are mainly located in the surface of rumen microbes. However, glycoside-degrading enzymes (e.g. glucosidase, fucosidase, xylosidase and arabinofuranosidase, etc.) are mainly located in the rumen fluid, when detected enzyme activities according to the ruminal compartments (e.g. enzymes in whole rumen contents, feed-associated enzymes, microbial cell-associated enzymes, and enzymes in the rumen fluid). Ruminal fungi are the primary contributors to high production of novel enzymes; the bacteria and protozoa also have important functions, but less central roles. The enzyme activities of bacteria, protozoa and fungi were detected 32.26, 19.21 and 47.60 mol glucose release/min/mL mediem for cellulose; 42.56, 14.96 and 64.93 mmol xylose release/min/mL medium after 48h incubation, respectively. The polysachharide-degrading enzyme activity of ruminal anaerobic fungi (e.g. Neocallimastix patriciarum and Piromyces communis, etc.) was much higher approximately 3~6 times than that of aerobic fungi (e.g. Tricoderma reesei, T. viridae and Aspergillus oryzae, etc.) used widely in industrial process. Therefore, the rumen ecosystem could be a growing source of novel enzymes having a tremendous potential for industrial applications.

Effect of Diet on Enzyme Profile, Biochemical Changes and In sacco Degradability of Feeds in the Rumen of Buffalo

  • Kamra, D.N.;Saha, Sudipto;Bhatt, Neeru;Chaudhary, L. C.;Agarwal, Neeta
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권3호
    • /
    • pp.374-379
    • /
    • 2003
  • Four rumen fistulated Murrah buffaloes were used to study the effect of four diets differing in roughage to concentrate ratio on rumen biochemical changes, microbial enzyme profile and in sacco degradability of feed in a $4{\times}4$ Latin Square design. The animals were fed four diets consisting of 80:20, 70:30, 60:40 and 50:50 ratios of wheat straw and concentrate mixtures, respectively. Wheat straw and concentrate mixture were mixed with water (0.6 l/kg feed) and complete feed mixture was offered to the animals at 8:00 h and 16:00 h in two equal parts. The variation in pH of rumen liquor (difference of maximum and minimum during 0-8 h post feeding) increased with increasing level of concentrate mixture in the diet. There was no effect of diet composition on volatile fatty acids, total nitrogen and trichloro-acetic acid precipitable nitrogen in the rumen liquor, but ammonia nitrogen increased with increasing level of concentrate mixture in the ration. Major portions of all fibre degrading enzymes were present in the particulate material (PM) of the rumen contents, but protease was absent in PM fraction. The activities of micro-crystalline cellulase, acetyl esterase and protease increased with increase in the level of concentrate mixture, but the activities of other enzymes (carboxymethylcellulase, filter paper degrading activity, xylanase, $\beta$-glucosidase and $\beta$-xylosidase) were not affected. The in sacco degradability and effective degradability of feeds increased with increasing level of concentrate mixture in the ration.

Distribution and Activities of Hydrolytic Enzymes in the Rumen Compartments of Hereford Bulls Fed Alfalfa Based Diet

  • Lee, S.S.;Kim, C.-H.;Ha, J.K.;Moon, Y.H.;Choi, N.J.;Cheng, K.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권12호
    • /
    • pp.1725-1731
    • /
    • 2002
  • The distribution and activities of hydrolytic enzymes (cellulolyti, hemicellulolytic,pectinolytic and others) in the rumen compartments of Hereford bulls fed 100% alfalfa hay based diets were evaluated. The alfalfa proportion in the diet was gradually increased for two weeks. Whole rumen contents were processed into four fractions: Rumen contents including both the liquid and solid fractions were homogenized and centrifuged, and the supernatant was assayed for enzymes located in whole rumen contents (WRE); rumen contents were centrifuged and the supernatant was assayed for enzymes located in rumen fluids (RFE); feed particles in rumen contents were separated manually, washed with buffer, resuspended in an equal volume of buffer, homogenized and centrifuged and supernatant was assayed for enzymes associated with feed particles (FAE); and rumen microbial cell fraction was separated by centrifugation, suspended in an equal volume of buffer, sonicated and centrifuged, and the supernatant was assayed for enzymes bound with microbial cells (CBE). It was found that polysaccharide-degrading proteins such as $\beta$-1,4-D-endoglucanase, $\beta$-1,4-D-exoglucanase, xylanase and pectinase enzymes were located mainly with the cell bound (CBE) fraction. However, $\beta$-D-glucosidase, $\beta$-D-fucosidase, acetylesterase, and $\alpha$-L-arabinofuranosidase were located in the rumen fluids (RFE) fraction. Protease activity distributions were 37.7, 22.1 and 40.2%, and amylase activity distributions were 51.6, 18.2 and 30.2% for the RFE, FAE and CBE fractions, respectively. These results indicated that protease is located mainly in rumen fluid and with microbial cells, whereas amylase was located mainly in the rumen fluid.

PURIFICATION AND PROPERTIES OF EXTRACELLULAR NUCLEASE(S) FROM RUMEN CONTENTS OF BUBALUS BUBALIS

  • Sinha, P.R.;Dutta, S.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제3권2호
    • /
    • pp.115-120
    • /
    • 1990
  • Extracellular nuclease(s) in buffalo rumen fluid were purified from strained rumen fluid by a procedure involving Seitz filtration, acetone fractionation and gel filtration on Sephadex G-100. The enzyme resolved into two peaks exhibiting both DNase and RNase activities. The molecular weight of enzyme corresponding to peaks I and II were approximately 30,000 and 12,000 respectively. The properties of enzymes from the two peaks, however, were same. Optimum temperature for both DNase and RNase activities was at $50^{\circ}C$. Whereas DNase activity was stable upto $60^{\circ}C$, RNase activity was stable only up to $50^{\circ}C$. DNase activity recorded two pH optima, one at pH 5.5 and the other at pH 7.0. RNase activity recorded a broad pH optimum between pH 6.0-8.0. pH stability of the enzyme coincided with pH optima for both the activities. DNase activity was stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. RNase activity was also stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. Reducing agents stimulated both the activities.

Effects of Non-ionic Surfactants on Enzyme Distributions of Rumen Contents, Anaerobic Growth of Rumen Microbes, Rumen Fermentation Characteristics and Performances of Lactating Cows

  • Lee, S.S.;Ahn, B.H.;Kim, H.S.;Kim, C.H.;Cheng, K.-J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권1호
    • /
    • pp.104-115
    • /
    • 2003
  • A series of experiments was carried out to determine the possibility for the non-ionic surfactant (NIS) as a feed additive for ruminant animals. The effect of the NIS on (1) the enzyme distribution in the rumen fluids of Hereford bulls, (2) the growth of pure culture of rumen bacteria and (3) rumen anaerobic fungi, (4) the ruminal fermentation characteristics of Korean native cattle (Hanwoo), and (5) the performances of Holstein dairy cows were investigated. When NIS was added to rumen fluid at the level of 0.05 and 0.1% (v/v), the total and specific activities of cell-free enzymes were significantly (p<0.01) increased, but those of cell-bound enzymes were slightly decreased, but not statistically significant. The growth rates of ruminal noncellulolytic species (Ruminobacter amylophilus, Megasphaera elsdenii, Prevotella ruminicola and Selenomonas ruminantium) were significantly (p<0.01) increased by the addition of NIS at both concentrations tested. However, the growth rate of ruminal cellulolytic bacteria (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and Butyrivibrio fibrisolvens) were slightly increased or not affected by the NIS. In general, NIS appears to effect Gram-negative bacteria more than Gram-positive bacteria; and non-cellulolytic bacteria more than cellulolytic bacteria. The growth rates of ruminal monocentric fungi (Neocallimastix patriciarum and Piromyces communis) and polycentric fungi (Orpinomyces joyonii and Anaeromyces mucronatus) were also significantly (p<0.01) increased by the addition of NIS at all concentrations tested. When NIS was administrated to the rumen of Hanwoo, Total VFA and ammonia-N concentrations, the microbial cell growth rate, CMCase and xylanase activities in the rumen increased with statistical difference (p<0.01), but NIS administration did not affect at the time of 0 and 9 h post-feeding. Addition of NIS to TMR resulted in increased TMR intake and increased milk production by Holstein cows and decreased body condition scores. The NEFA and corticoid concentrations in the blood were lowered by the addition of NIS. These results indicated that the addition of NIS may greatly stimulate the release of some kinds of enzymes from microbial cells, and stimulate the growth rates of a range of anaerobic ruminal microorganisms, and also stimulate the rumen fermentation characteristics and animal performances. Our data indicates potential uses of the NIS as a feed additive for ruminant animals.

Cloning and Characterization of Carboxylesterase (est2R) Gene from Cow Rumen Metagenomic Library

  • Kang, Tae-Ho;Kim, Min-Keun;Kim, Tae-Yang;Kim, Gi-Hwan;Kim, Jung-Ho;Kim, Hoon;Yun, Han-Dae
    • 농업생명과학연구
    • /
    • 제46권3호
    • /
    • pp.109-118
    • /
    • 2012
  • The gene encoding an esterase enzyme was cloned from a metagenomic library of cow rumen bacteria. The esterase gene (est2R) was 2,120 bp in length, encoding a protein of 516 amino acid residues with a calculated molecular weight of 57,286 Da. The molecular weight of the enzyme was estimated to be 57,000 Da by SDS-PAGE. Est2R shared 35.6% amino acid identity with esterase (CAH19079) of uncultured prokaryote. The Est2R was most active at $20-40^{\circ}C$, and showed optimum at $30^{\circ}C$ and pH 8.0. The most activity of Est2R for the different chain length of p-nitrophenyl ester group as substrate was p-nitrophenyl acetate. Moreover, the enzyme was found to be most active without organic solvent, followed by 98% active with ethanol, and the enzyme activity was highly affected by the acetonitrile. The enzyme was significantly inhibited by $Zn^{2+}$ but stimulated by $Ca^{2+}$. So, novel esterase gene est2R is likely to obtain from cow rumen metagenome and supposed to use for industrial purpose.

Fibrolytic Enzyme 첨가가 반추위 발효 성상 및 착유우의 유량 및 유성분에 미치는 영향 (Effects of Fibrolytic Enzyme Addition on Ruminal Fermentation, Milk Yield and Milk Composition of Dairy Cows)

  • 안종호;김연정;김현진
    • Journal of Animal Science and Technology
    • /
    • 제45권1호
    • /
    • pp.131-142
    • /
    • 2003
  • 본 연구는 유우의 생산성 향상을 위하여 유우 사료에 fibrolytic enzyme을 첨가하여 반추위내 발효 성상과 비유중인 젖소의 생산성에 미치는 영향을 평가하였다. 본 실험의 결과를 요약하면 다음과 같다. In vitro 실험을 통하여 NDF 함량 수준이 다른 TMR 사료에 fibrolytic enzyme을 3가지 수준(0, 0.05, 0.1%)으로 달리하여 첨가하였을 때 나타난 NDF 소화율은 효소 첨가시 다소 증가하는 경향을 보였으며 NDF 수준별로는 NDF 38 및 43% 수준보다 NDF 34% 수준에서 NDF 소화율이 낮은 경향을 나타내었는데 이는 본 시험 사료의 조성 성분으로 보아 NDF 성분 구성상 hemicellulose 함량이 높아 이 점이 반추위내 NDF 소화율에 영향을 주었다고 사료된다. 반추위액의 pH는 fibrolytic enzyme의 첨가 수준에 의한 영향보다는 NDF 수준에 의해 영향을 더 받은 것으로 나타났으며(P<0.001) NH3-N 생성도 전체적으로 fibrolytic enzyme 첨가에 따른 효과가 나타나지 않았다. Acetic acid의 생성량은 NDF 수준에 의해 유의한 영향을 받았으나 (P<0.05) propionic acid의 생성량은 처리구간에 큰 차이를 나타내지 않았다. Acetic acid와 propionic acid 생성량 모두 효소 첨가에 의한 영향은 유의하게 나타나지 않았고 A/P ratio는 NDF 34% 수준의 fibrolytic enzyme 첨가구에서 무첨가구에 비해 다소 높은 경향을 나타내었다. CMCase의 효소 활성은 NDF 34 및 43% 수준에서 fibrolytic enzyme 첨가구(0.05, 0.1%)가 무첨가구에 비해 높은 효소 활성을 보였다. Xylanase의 효소 활성은 배양 개시 후 0시간대부터 12시간대까지는 효소 활성이 완만히 감소하였고 24시간 이후부터는 급격히 감소하였다. In vivo 실험을 이용하여 fibrolytic enzyme 첨가에 따른 착유우의 생산성 변화 결과는 다음과 같다. Fibrolytic enzyme 첨가에 의한 산유량은 enzyme 첨가구와 무첨가구에서 각각 25.80 및 23.90kg/d로서 enzyme 첨가구에서 약 8% (1.90kg/d) 증가하는 결과를 나타내었다. 유지방 및 유단백 함량의 경우는 fibrolytic enzyme 첨가구와 무첨가구간 차이가 없었으나 일일 생산량으로 환산하여 평가하면 enzyme 첨가시 유성분 생산량이 유의하게 증가하는 결과를 보였다 (P<0.01). 이상의 결과들로 볼 때, in vitro 실험의 경우 fibrolytic enzyme 첨가시 반추위내 발효성상에 명확한 변화를 보여주지 못했지만 enzyme 첨가에 따라 전반적으로 NDF 소화율이 다소나마 증가하는 경향을 보였다. In vivo 실험 결과를 종합하면 착유우 사료에 fibrolytic enzyme을 첨가시 유성분의 변화보다 유량의 증가 효과가 나타났으며 이는, 사료섭취량을 제한한 본 실험의 특성상, 사료섭취량 증진 효과가 아니라 체내 영양소 이용성 증진에 따르는 효과라고 판단되었다. 반추동물의 생산성 향상을 위한 방안으로서 fibrolytic enzyme 이용 효과는 연구자에 따라 다양한 결과를 나타내므로 효소의 적용 방법에 대한 연구가 더 필요하다고 사료된다.

Effect of Hydroquinone on Ruminal Urease in the Sheep and its Inhibition Kinetics in vitro

  • Zhang, Y.G.;Shan, A.S.;Bao, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권9호
    • /
    • pp.1216-1220
    • /
    • 2001
  • Effect of hydroquinone (HQ) on rumen urease activity was studied. Hydroquinone at concentrations of 0.01 ppm, 0.1 ppm, 1 ppm, and 10 ppm inhibited urease activity of intact rumen microbes in vitro by 25%, 34%, 55% and 64% respectively. In the presence of low concentrations of $\beta$-mercaptoethanol, rumen urease could be solubilized and partially purified. The Km for the enzyme was $2{\times}10^{-3}$ M with Vmax of $319.4{\mu}moles/mg$ min. The kinetics of inhibition with partially purified rumen urease was investigated. The result showed that the inhibitory effect was not eliminated by increasing urea concentrations indicating a noncompetitive effect in nature with an inhibition constant $1.2{\times}10^{-5}$ M. Hydroquinone at the concentration of 10 ppm produced 64% urease inhibition, did not affect ruminal total dehydrogenase and proteolytic enzyme (p>0.05), but increased cellulase activity by 28% (p<0.05) in vitro. These results indicated that hydroquinone was a effective inhibitor of rumen urease and could effectively delay urea hydrolysis without a negative effect. The inhibitor appeared to offer a potential to improve nitrogen utilization by ruminants fed diets containing urea.