Browse > Article

Cloning and Characterization of Carboxylesterase (est2R) Gene from Cow Rumen Metagenomic Library  

Kang, Tae-Ho (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Kim, Min-Keun (Gyeongsangnam-do Agricultural Research and Extension Service)
Kim, Tae-Yang (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Kim, Gi-Hwan (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Kim, Jung-Ho (Department of Agricultural Chemistry, Sunchon National University)
Kim, Hoon (Department of Agricultural Chemistry, Sunchon National University)
Yun, Han-Dae (Division of Applied Life Science (BK21 Program), Gyeongsang National University, Research Institute of Agriculture and Life Science, Gyeongsang National University)
Publication Information
Journal of agriculture & life science / v.46, no.3, 2012 , pp. 109-118 More about this Journal
Abstract
The gene encoding an esterase enzyme was cloned from a metagenomic library of cow rumen bacteria. The esterase gene (est2R) was 2,120 bp in length, encoding a protein of 516 amino acid residues with a calculated molecular weight of 57,286 Da. The molecular weight of the enzyme was estimated to be 57,000 Da by SDS-PAGE. Est2R shared 35.6% amino acid identity with esterase (CAH19079) of uncultured prokaryote. The Est2R was most active at $20-40^{\circ}C$, and showed optimum at $30^{\circ}C$ and pH 8.0. The most activity of Est2R for the different chain length of p-nitrophenyl ester group as substrate was p-nitrophenyl acetate. Moreover, the enzyme was found to be most active without organic solvent, followed by 98% active with ethanol, and the enzyme activity was highly affected by the acetonitrile. The enzyme was significantly inhibited by $Zn^{2+}$ but stimulated by $Ca^{2+}$. So, novel esterase gene est2R is likely to obtain from cow rumen metagenome and supposed to use for industrial purpose.
Keywords
Metagenomic library; Cow rumen; est2 gene; New group esterase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bradford, M. M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
2 Choi, Y. J., C. B. Miguez, and B. H. Lee. 2004. Charaterization and heterologous gene expression of a novel esterase from Lactobacillus casei CL96. Appl. Environ. Microbiol. 70: 3213-3221.
3 Clarke, D. G. and J. C. Hawke. 1970. Studies on rumen metabolism. VI. In vitro hydrolysis of triglyceride and isolation of a lipolytic fraction. J. Sci. Food Agr. 21: 446-452.
4 Daniel, R. 2004. The soil metagenome-a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15: 199-204.
5 Elend, C., C. Schmeisser, C. Leggewie, P. Babiak, J. D. Carballeira, H. L. Steele, J. L. Reymond, K. E. Jaeger, and W. R. Streit. 2006. Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl. Environ. Microbiol. 72: 3637-3645.
6 Fay, J. P., K. D. Jakober, K. J. Cheng, and J. W. Costerton. 1990. Esterase activity of pure cultures of rumen bacteria as expressed by the hydrolysis of p-nitrophenylpalmitate. Can. J. Microbiol. 368: 585-589.
7 Guo, P., L. Zhang, Z. Qi, R. Chen, and G. Jing. 2005. Expression in Escherichia coli, purification and characterization of Thermoanaerobacter tengcongensis ribosome recycling factor. J. Biochem. 138: 89-94.
8 Gutierrez, J., R. E. Davis, and I. L. Lindahl. 1959. Characteristics of saponin-utilizing bacteria from the rumen of cattle. Appl. Microbiol. 7: 304-308.
9 Henderson, C. 1971. A study of the lipase produced by Anaerovibrio lipolytica, a rumen bacterium. J. Gen. Microbiol. 65: 81-89.
10 Hespell, R. B. and P. J. O'Bryan. 1992. Purification and characterization of an $\alpha$-l-arabinofuranosidase from Butyrivibrio fibrisolvens GS113. Appl. Environ. Microbiol. 58: 1082-1088.
11 Hill, F. D., J. H. Saylor, R. S. Allen, and N. L. Jacobson. 1960. In vitro lipolysis by rumen ingesta. J. Anim. Sci. 19: 1266-1270.
12 Kang, T. H., M. K. Kim, D. N. Barman, J. H. Kim, H. Kim, and H. D. Yun. 2012. Cloning and characterization of cellulase gene (cel5B) from cow rumen metagenome. J. Agri. Life Sci. 46: In press.
13 Khalmeyezer, V., I. Fischer, U. T. Bornscheuer, and J. Altenbuchner. 1999. Screening, nucleotides sequence, and biochemical characterization of an esterase from Pseudomonas fluorescens with high activity towards lactones. Appl. Environ. Microbiol. 65: 477-482.
14 Kim, H. K., S. Y. Park, J. K. Lee, and T. K. Oh. 1998. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci. Biotechnol. Biochem. 62: 66-71.
15 Lanz, W. W. and P. P. Williams. 1973. Characterization of esterase produced by a ruminal bacterium identified as Butyrivibrio fibrisolvens. J. Bacteriol. 113: 1170-1176.
16 Lee, S. W., K. H. Won, H. K. Lim, J. C. Kim, G. J. Choi, and K. Y. Cho. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65: 720-726.
17 Lidija, T. I. Z., D. G. C. Gordana, R. G. Kristina, M. V. Miroslav, and M. K. Ivanka. 2009. Enzymatic characterization of 30 kDa lipase from Pseudomonas aeruginosa ATCC 27853. J. Basic Microbiol. 49: 452-462.
18 Lorenz, P. and C. Schleper. 2002. Metagenome-a challenging source of enzyme discovery. J. Mol. Catal. B. 20: 13-19.
19 MacNeil, I. A., C. L. Tiong, C. Minor, P. R. August, T. H. Grossman, K. A. Loiacono, B. A. Lynch, T. Phillips, S. Narula, R. Sundaramoorthi, A. Tyler, T. Aldredge, H. Long, M. Gilman, D. Holt, and M. S. Osburne. 2001. Expression and isolation of antimicrobial small molecules from soil DNA Libraries. J. Mol. Microbiol. Biotechnol. 3: 301-308.
20 Morris, E. J. and J. S. Bacon. 1976. Digestion of acetyl groups and cell-wall polysaccharides of grasses in the rumen. Proc. Nutr. Soc. 35: 94-95.
21 Sambrook J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
22 Schloss, P. D. and J. Handelsman. 2003. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 14: 303-310.
23 Streit, W. R., R. Daniel, and K. E. Jaeger. 2004. Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms. Curr. Opin. Biotechnol. 15: 285-290.
24 Vazquez-Laslop, N., J. Lee, R. Hu, and A. A. Neyfakh. 2001. Molecular sieve mechanism of selective release of cytoplasmic proteins by osmotically shocked Escherichia coli. J. Bacterili. 183: 2399-2404.
25 Williams, P. P. and R. L. Stolzenberg. 1972. Rumen bacterial degradation of benzo($\beta$)thien-4-yl methyl-carbamate (Mobam) and effect of Mobam on ruminal bacteria. Appl. Microbiol. 23: 754-749.
26 Wolin, M. J. 1974. Metabolic interactions among intestinal microorganisms. Am. J. Clin. Nutr. 27: 1320-1328.
27 Yun, H. D. and S. J. Cho. 2005. Cloning and characterization of cellulase gene (cel5A) from cow rumen metagenome. J. Agric. Life Sci. 39: 1-8.
28 Yun, J., S. Kang, S. Park, H. Yoon, M. J. Kim, S. Heu, and S. Ryu. 2004. Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl. Environ. Microbiol. 70: 7229-723.