• Title/Summary/Keyword: Rule-based Algorithm

Search Result 795, Processing Time 0.03 seconds

Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism (하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출)

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

An Algorithm Solving SAT Problem Based on Splitting Rule and Extension Rule

  • Xu, Youjun
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1149-1157
    • /
    • 2017
  • The satisfiability problem is always a core problem in artificial intelligence (AI). And how to improve the efficiency of algorithms solving the satisfiability problem is widely concerned. Algorithm IER (Improved Extension Rule) is based on extension rule. The number of atoms and the number of clauses affect the efficiency of the algorithm IER. DPLL rules are helpful to reduce these numbers. Then a complete algorithm CIER based on splitting rule and extension rule is proposed in this paper in order to improve the efficiency. At first, the algorithm CIER (Complete Improved Extension Rule) reduces the scale of a clause set with DPLL rules. Then, the clause set is split into a group of small clause sets. In the end, the satisfiability of the clause set is got from these small clause sets'. A strategy MOAMD (maximum occurrences and maximum difference) for the algorithm CIER is given. With this strategy, a better arrangement of atoms could be got. This arrangement could make the number of small clause sets fewer and the scale of these sets smaller. So, the algorithm CIER will be more efficient.

An improvement of LEM2 algorithm

  • The, Anh-Pham;Lee, Young-Koo;Lee, Sung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.302-304
    • /
    • 2011
  • Rule based machine learning techniques are very important in our real world now. We can list out some important application which we can apply rule based machine learning algorithm such as medical data mining, business transaction mining. The different between rules based machine learning and model based machine learning is that model based machine learning out put some models, which often are very difficult to understand by expert or human. But rule based techniques output are the rule sets which is in IF THEN format. For example IF blood pressure=90 and kidney problem=yes then take this drug. By this way, medical doctor can easy modify and update some usable rule. This is the scenario in medical decision support system. Currently, Rough set is one of the most famous theory which can be used for produce the rule. LEM2 is the algorithm use this theory and can produce the small set of rule on the database. In this paper, we present an improvement of LEM2 algorithm which incorporates the variable precision techniques.

The Rule Case Simplification Algorithm to be used in a Rule-Based System (규칙기반 시스템에 사용되는 규칙 간소화 알고리즘)

  • Zheng, Baowei;Yeo, Jeong-Mo
    • The KIPS Transactions:PartD
    • /
    • v.17D no.6
    • /
    • pp.405-414
    • /
    • 2010
  • A rule is defined as a case to determine the target values according to combination of various Business factors. The information system is used to represent enterprise's business, which includes and implements the amount of these rules to Rule-Based System. A Rule-Based System can be constructed by using the rules engine method or Relational Database technology. Because the rules engine method has some disadvantages, the Rule-Based System is mostly developed with Relational Database technology. When business scales become larger and more complex, a large number of various rule cases must be operated in system, and processing these rule cases requires additional time, overhead and storage space, and the speed of execution slows down. To solve these problems, we propose a simplification algorithm that converts a large amount of rule cases to simplification rule cases with same effects. The proposed algorithm is applied to hypothetical business rule data and a large number of simplification experiments and tests are conducted. The final results proved that the number of rows can be reduced to some extent. The proposed algorithm can be used to simplify business rule data for improving performance of the Rule-Based System implemented with the Relational Database.

The method of making Rule Cases to build Rule-Based System (규칙기반시스템의 구축에 필요한 규칙 발생 기법)

  • Zheng, BaoWei;Yeo, Jeongmo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.852-855
    • /
    • 2010
  • Tree type of Rule Case will be processed by the method that provide practical Rule Case to Rule Engine that is made with procedural language beforehand, then the Rule Engine according to the condition of the special Rule Case to return result in current Rule-Based System. There are two disadvantages in the method; the first is according to specific business rule after construct the Rule Engine when the business rule changing the Rule Engine also must be changed. The second is when Rule have many conditions the Rule Engine will become very complex and the speed of processing Rule Case will become very slow. In this paper, we will propose a simplified algorithm that according to the theory of ID Tree to produce Rules which be used in Rule-Based System. The algorithm can not only produce Rules but also make sure of satisfying change of business rule by execute the algorithm. Because it is not necessary to make a Rule Engine, we will anticipate effect of increasing speed and reducing cost from Rule-Based System of applying the algorithm.

Development of a Backward Chaining Inference Methodology Considering Unknown Facts Based on Backtrack Technique (백트래킹 기법을 이용한 불확정성 하에서의 역방향추론 방법에 대한 연구)

  • Song, Yong-Uk;Shin, Hyun-Sik
    • Journal of Information Technology Services
    • /
    • v.9 no.3
    • /
    • pp.123-144
    • /
    • 2010
  • As knowledge becomes a critical success factor of companies nowadays, lots of rule-based systems have been and are being developed to support their activities. Large number of rule-based systems serve as Web sites to advise, or recommend their customers. They usually use a backward chaining inference algorithm based on backtrack to implement those interactive Web-enabled rule-based systems. However, when the users like customers are using these systems interactively, it happens frequently where the users do not know some of the answers for the questions from the rule-based systems. We are going to design a backward chaining inference methodology considering unknown facts based on backtrack technique. Firstly, we review exact and inexact reasoning. After that, we develop a backward chaining inference algorithm for exact reasoning based on backtrack, and then, extend the algorithm so that it can consider unknown facts and reduce its search space. The algorithm speeded-up inference and decreased interaction time with users by eliminating unnecessary questions and answers. We expect that the Web-enabled rule-based systems implemented by our methodology would improve users' satisfaction and make companies' competitiveness.

A Rule-Based Stereo Matching Algorithm to Obtain Three Dimesional Information (3차원 정보를 얻기 위한 Rule-Based Stereo Matching Algorithm)

  • 심영석;박성한
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.1
    • /
    • pp.151-163
    • /
    • 1990
  • In this paper, rule-based stereo algorithm is explored to obtain three dimensional information of an object. In the preprocessing of the stereo matching, feature points of stereo images must be less sensitive to noise and well linked. For this purpose, a new feature points detection algorithm is developed. For performing the stereo matching which is most important process of the stereo algorithm, the feature representation of feature points is first described. The feature representation is then used for a rule-based stereo algorithm to determine the correspondence between the input stereo images. Finally, the three dimensional information of the object is determined from the correspondence of the feature points of right and left images.

  • PDF

A Study on the Hybrid Data Mining Mechanism Based on Association Rules and Fuzzy Neural Networks (연관규칙과 퍼지 인공신경망에 기반한 하이브리드 데이터마이닝 메커니즘에 관한 연구)

  • Kim Jin Sung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.884-888
    • /
    • 2003
  • In this paper, we introduce the hybrid data mining mechanism based in association rule and fuzzy neural networks (FNN). Most of data mining mechanisms are depended in the association rule extraction algorithm. However, the basic association rule-based data mining has not the learning ability. In addition, sequential patterns of association rules could not represent the complicate fuzzy logic. To resolve these problems, we suggest the hybrid mechanism using association rule-based data mining, and fuzzy neural networks. Our hybrid data mining mechanism was consisted of four phases. First, we used general association rule mining mechanism to develop the initial rule-base. Then, in the second phase, we used the fuzzy neural networks to learn the past historical patterns embedded in the database. Third, fuzzy rule extraction algorithm was used to extract the implicit knowledge from the FNN. Fourth, we combine the association knowledge base and fuzzy rules. Our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic.

  • PDF

Rule Extraction from Neural Networks : Enhancing the Explanation Capability

  • Park, Sang-Chan;Lam, Monica-S.;Gupta, Amit
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.2
    • /
    • pp.57-71
    • /
    • 1995
  • This paper presents a rule extraction algorithm RE to acquire explicit rules from trained neural networks. The validity of extracted rules has been confirmed using 6 different data sets. Based on experimental results, we conclude that extracted rules from RE predict more accurately and robustly than neural networks themselves and rules obtained from an inductive learning algorithm do. Rule extraction algorithm for neural networks are important for incorporating knowledge obtained from trained networks into knowledge based systems. In lieu of this, the proposed RE algorithm contributes to the trend toward developing hybrid and versatile knowledge-based system including expert systems and knowledge-based decision su, pp.rt systems.

  • PDF

Splitting Algorithm Using Total Information Gain for a Market Segmentation Problem

  • Kim, Jae-Kyeong;Kim, Chang-Kwon;Kim, Soung-Hie
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.2
    • /
    • pp.183-203
    • /
    • 1993
  • One of the most difficult and time-consuming stages in the development of the knowledge-based system is a knowledge acquisition. A splitting algorithm is developed to infer a rule-tree which can be converted to a rule-typed knowledge. A market segmentation may be performed in order to establish market strategy suitable to each market segment. As the sales data of a product market is probabilistic and noisy, it becomes necessary to prune the rule-tree-at an acceptable level while generating a rule-tree. A splitting algorithm is developed using the pruning measure based on a total amount of information gain and the measure of existing algorithms. A user can easily adjust the size of the resulting rule-tree according to his(her) preferences and problem domains. The algorithm is applied to a market segmentation problem of a medium-large computer market. The algorithm is illustrated step by step with a sales data of a computer market and is analyzed.

  • PDF