The Journal of Korean Institute of Communications and Information Sciences
/
v.27
no.3A
/
pp.221-230
/
2002
This paper presents a new moving object segmentation algorithm using markov random field. The algorithm is based on signal detection theory. That is to say, motion of moving object is decided by binary decision rule, and false decision is corrected by markov random field model. The procedure toward complete segmentation consists of two steps: motion detection and object segmentation. First, motion detection decides the presence of motion on velocity vector by binary decision rule. And velocity vector is generated by optical flow. Second, object segmentation cancels noise by Bayes rule. Experimental results demonstrate the efficiency of the presented method.
This paper presents an intelligent computer system, which can easily diagnose electrical fire causes, without the help of human experts of electrical fires diagnosis. For this system, a database is built with facts and rules driven from real electrical fires, and an intellectual database system which even a beginner can diagnose fire causes has been developed, named as an Electrical Fire Causes Diagnosis System : EFCDS. The database system has adopted, as an inference engine, a mixed reasoning approach which is constituted with the rule-based reasoning and the case-based reasoning. The system for a reasoning model was implemented using Delphi 3, one of program development tools, and Paradox is used as a database building tool. To verify effectiveness and performance of this newly developed diagnosis system, several simulated fire examples were tested and the causes of fire examples were detected effectively by this system. Additional researches will be needed to decide the minimal significant level of the solution and the weighting level of important factors.
A feedwater controller targeted for an ABWR has been implemented using a modern field programmable gate array (FPGA), and verified using the full scope simulator at Taipower's Lungmen nuclear power station. The adopted control algorithm is a rule-based fuzzy logic. Point to point validation of the FPGA circuit board has been executed using a digital pattern generator. The simulation model of the simulator was employed for verification and validation of the controller design under various plant initial conditions. The transient response and the steady state tracking ability were evaluated and showed satisfactory results. The present work has demonstrated that the FPGA based approach incorporated with a rule-based fuzzy logic control algorithm is a flexible yet feasible approach for feedwater controller design in nuclear power plant applications.
A class of SWP(Stochastic Wane Propagation) models microscopically mimics individual vehicles' stochastic behavior and traffic jam propagation with simplified car-following models based on CA(Cellular Automata) theory and macroscopically captures dynamic traffic flow relationships based on statistical physics. SWP model, a program-oriented model using both discrete time-space and integer data structure, can simulate a huge road network with high-speed computing time. However, the model has shortcomings to both the capturing of low speed within a jam microscopically and that of the density and back propagation speed of traffic congestion macroscopically because of the generation of spontaneous jam through unrealistic collision avoidance. In this paper, two additional rules are integrated into the NaSch model. The one is SMR(Stopping Maneuver Rule) to mimic vehicles' stopping process more realistically in the tail of traffic jams. the other is LAR(Low Acceleration Rule) for the explanation of low speed characteristics within traffic jams. Therefore, the CA car-following model with the two rules prevents the lockup condition within a heavily traffic density capturing both the stopping maneuver behavior in the tail of traffic jam and the low acceleration behavior within jam microscopically, and generates more various macroscopic traffic flow mechanism than NaSch model's with the explanation of propagation speed and density of traffic jam.
The conduct of seafarer is major cause of marine accidents. This study models the behavior of the seafarer based on the Hidden Markov Model (HMM). Additionally, through the path analysis of the behavior estimated by the model, the kind of situations, procedures and errors that may have caused the marine accidents were interpreted. To successfully implement the model, the seafarer behaviors were observed by means of the summarized verdict reports issued by the Korean Maritime Safety Tribunal, and the observed results converted into behavior data suitable for HMM learning through the behavior classification framework based on the SRKBB (Skill-, Rule-, and Knowledge-Based Behavior). As a result of modeling the seafarer behaviors by the type of vessels, it was established that there was a difference between the models, and the possibility of identifying the preferred path of the seafarer behaviors. Through these results, it is expected that the model implementation technique proposed in this study can be applied to the prediction of the behavior of the seafarer as well as contribute to the prioritization of the behavior correction among seafarers, which is necessary for the prevention of marine accidents.
The Latent Growth Modeling(LGM) is known as the typical analysis method of longitudinal data and it could be classified into unconditional model and conditional model. It is common to assume that the growth trajectory of unconditional model of LGM is linear. In the case of quasi-linear, the methodology for improving the model fitness using Sequential Pattern of Association Rule Mining is suggested. To do this, we divide longitudinal data into quintiles and extract periodic changes of the longitudinal data in each quintiles and make sequential pattern based on this periodic changes. To evaluate the effectiveness, the LGM module in SPSS AMOS was used and the dataset of the Youth Panel from 2001 to 2006 of Korea Employment Information Service. Our methodology was able to increase the fitness of the model compared to the simple linear growth trajectory.
This paper is proposing a novel machine scheduling model for the unrelated parallel machine scheduling problem without setup times to minimize the total completion time, also known as "makespan". This problem is a NP-complete problem, and to date, most approaches for real-life situations are based on the operator's experience or simple heuristics. The new model based on the Memetic Algorithm, which was proposed by P. Moscato in 1989, is a hybrid algorithm that includes genetic algorithm and local search optimization. The new model is tested on randomly generated datasets, and is compared to optimal solution, and four scheduling models; three rule-based heuristic algorithms, and a genetic algorithm based scheduling model from literature; the test results show that the new model performed better than scheduling models from literature.
In the case of military supplies, any potential failure and causes of failures must be considered. This study is aimed at examining the failure modes of a rotorcraft landing system to identify the priority items. Failure mode and effects analysis (FMEA) is applied to the rotorcraft landing system. In general, the FMEA is used to evaluate the reliability in engineering fields. Three elements, specifically, the severity, occurrence, and detectability are used to evaluate the failure modes. The risk priority number (RPN) can be obtained by multiplying the scores or the risk levels pertaining to severity, occurrence, and detectability. In this study, different weights of the three elements are considered for the RPN assessment to implement the FMEA. Furthermore, the FMEA is implemented using a fuzzy rule base, similarity aggregation model (SAM), and grey theory model (GTM) to perform a comparative analysis. The same input data are used for all models to enable a fair comparison. The FMEA is applied to military supplies by considering methodological issues. In general, the fuzzy theory is based on a hypothesis regarding the likelihood of the conversion of the crisp value to the fuzzy input. Fuzzy FMEA is the basic method to obtain the fuzzy RPN. The three elements of the FMEA are used as five linguistic terms. The membership functions as triangular fuzzy sets are the simplest models defined by the three elements. In addition, a fuzzy set is described using a membership function mapping the elements to the intervals 0 and 1. The fuzzy rule base is designed to identify the failure modes according to the expert knowledge. The IF-THEN criterion of the fuzzy rule base is formulated to convert a fuzzy input into a fuzzy output. The total number of rules is 125 in the fuzzy rule base. The SAM expresses the judgment corresponding to the individual experiences of the experts performing FMEA as weights. Implementing the SAM is of significance when operating fuzzy sets regarding the expert opinion and can confirm the concurrence of expert opinion. The GTM can perform defuzzification to obtain a crisp value from a fuzzy membership function and determine the priorities by considering the degree of relation and the form of a matrix and weights for the severity, occurrence, and detectability. The proposed models prioritize the failure modes of the rotorcraft landing system. The conventional FMEA and fuzzy rule base can set the same priorities. SAM and GTM can set different priorities with objectivity through weight setting.
Natural language processing (NLP) is an emerging research area in which we study how machines can be used to perceive and alter the text written in natural languages. We can perform different tasks on natural languages by analyzing them through various annotational tasks like parsing, chunking, part-of-speech tagging and lexical analysis etc. These annotational tasks depend on morphological structure of a particular natural language. The focus of this work is part-of-speech tagging (POS tagging) on Hindi language. Part-of-speech tagging also known as grammatical tagging is a process of assigning different grammatical categories to each word of a given text. These grammatical categories can be noun, verb, time, date, number etc. Hindi is the most widely used and official language of India. It is also among the top five most spoken languages of the world. For English and other languages, a diverse range of POS taggers are available, but these POS taggers can not be applied on the Hindi language as Hindi is one of the most morphologically rich language. Furthermore there is a significant difference between the morphological structures of these languages. Thus in this work, a POS tagger system is presented for the Hindi language. For Hindi POS tagging a hybrid approach is presented in this paper which combines "Probability-based and Rule-based" approaches. For known word tagging a Unigram model of probability class is used, whereas for tagging unknown words various lexical and contextual features are used. Various finite state machine automata are constructed for demonstrating different rules and then regular expressions are used to implement these rules. A tagset is also prepared for this task, which contains 29 standard part-of-speech tags. The tagset also includes two unique tags, i.e., date tag and time tag. These date and time tags support all possible formats. Regular expressions are used to implement all pattern based tags like time, date, number and special symbols. The aim of the presented approach is to increase the correctness of an automatic Hindi POS tagging while bounding the requirement of a large human-made corpus. This hybrid approach uses a probability-based model to increase automatic tagging and a rule-based model to bound the requirement of an already trained corpus. This approach is based on very small labeled training set (around 9,000 words) and yields 96.54% of best precision and 95.08% of average precision. The approach also yields best accuracy of 91.39% and an average accuracy of 88.15%.
In general, the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions to be represented by interval -valued fuzzy sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner. This paper presents fuzzy Petri nets and proposes an interval-valued fuzzy backward reasoning algorithm for rule-based systems based on fuzzy Petri nets Fuzzy Petri nets model the fuzzy production rules in the knowledge base of a rule-based system, where the certainty factors of the fuzzy propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by interval-valued fuzzy sets. The algorithm we proposed generates the backward reasoning path from the goal node to the initial nodes and then evaluates the certainty factor of the goal node. The proposed interval-valued fuzzy backward reasoning algorithm can allow the rule-based systems to perform fuzzy backward reasoning in a more flexible and human-like manner.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.