• Title/Summary/Keyword: Rule-Based Model

Search Result 1,025, Processing Time 0.025 seconds

A Study on the Grain Size Dependence of Hardness in Nanocrystalline Metals (나노결정금속의 경도의 결정립도의존성에 관한 연구)

  • 김형섭;조성식;원창환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.73-76
    • /
    • 1997
  • Nanocrystalline materials have been modeled as a mixture of the crystallite and the grain boundary phases. The mechanical property has been calculated using the rule of mixtures based on the volume fractions. The critical grain size concept suggested by Nieh and Wadsworth and porous material model suggested by Lee and Kim were applied to the calculation. The theoretical results fit very well with the experimental values

  • PDF

Dissolved Gas Analysis Using the Dempster-Shafer Rule of Combination (Dempster-Shafer 결합 규칙을 이용한 유중 가스 분석법)

  • Yoon, Yong-Han;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.301-303
    • /
    • 1998
  • This paper presents a new approach to diagnose and detect faults in oil-filled power transformers based on various dissolved gas analyses. A theoretic fuzzy information model is introduced, An inference scheme which yields the 'most' consistent conclusion proposed. A framework is established that allows various dissolved gas analyses to be combined in a systematic way such as the Dempster-Shafer rule. Good diagnosis accuracy is obtained with the proposed approach.

  • PDF

Probabilistic analysis of peak response to nonstationary seismic excitations

  • Wang, S.S.;Hong, H.P.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.527-542
    • /
    • 2005
  • The main objective of this study is to examine the accuracy of the complete quadratic combination (CQC) rule with the modal responses defined by the ordinates of the uniform hazard spectra (UHS) to evaluate the peak responses of the multi-degree-of-freedom (MDOF) systems subjected to nonstationary seismic excitations. For the probabilistic analysis of the peak responses, it is considered that the seismic excitations can be modeled using evolutionary power spectra density functions with uncertain model parameters. More specifically, a seismological model and the Kanai-Tajimi model with the boxcar or the exponential modulating functions were used to define the evolutionary power spectral density functions in this study. A set of UHS was obtained based on the probabilistic analysis of transient responses of single-degree-of-freedom systems subjected to the seismic excitations. The results of probabilistic analysis of the peak responses of MDOF systems were obtained, and compared with the peak responses calculated by using the CQC rule with the modal responses given by the UHS. The comparison seemed to indicate that the use of the CQC rule with the commonly employed correlation coefficient and the peak modal responses from the UHS could lead to significant under- or over-estimation when contributions from each of the modes are similarly significant.

The study related to the meta data for the attribute mapping from IFC to CityGML (IFC에서 CityGML로 속성 맵핑을 위한 메타 데이터에 관한 연구)

  • Kang, Tae Wook;Choi, Hyun Sang;Hwang, Jung Rae;Hong, Chang Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_1
    • /
    • pp.559-565
    • /
    • 2012
  • The purpose of the present study is to suggest the meta data of the attribute mapping for interoperability from IFC to CityGML. For this, we analyzed the interoperability issue including the neutral information model structure such as IFC, CityGML. To solve the interoperability problem between IFC and CityGML model which is the neutral GIS format, We proposed the meta data including the mapping rule. The meta data is consists of the connection information between BIM and GIS model, the mapping rule based on the perspective of the use-case, the operator and the attribute. By using this, XML to represent the meta data is defined and the information mapping system is developed.

A Model for Production Planning in a Multi-item Production System -Multi-item Parametric Decision Rule- (다품목(多品目) 생산체제(生産體制)의 생산계획(生産計劃)을 위한 모델)

  • Choe, Byeong-Gyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.1 no.2
    • /
    • pp.27-38
    • /
    • 1975
  • This paper explores a quantitative decision-making system for planning production, inventories and work-force in a multi-item production system. The Multi-item Parametric Decision Rule (MPDR) model, which assumes the existence of two types of linear feed-back rules, one for work-force level and one for production rates, is basically an extension of the existing method of Parametric Production Planning (PPP) proposed by C.H. Jones. The MPDR model, however, explicitly considers the effect of manufacturing progress and other factors such as employee turn-over, difference in work-days between month etc., and it also provides decision rules for production rates of individual items. First, the cost relations of the production system are estimated in terms of mathematical functions, and then decision rules for work-force level and production rates of individual items are establised based upon the estimated objective cost function. Finally, a direct search technique is used to find a set of parameters which minimizes the total cost of the objective function over a specified planning horizon, given estimates of future demands and initial values of inventories and work-force level. As a case problem, a hypothetical decision rule is developed for a particular firm (truck assembly factory).

  • PDF

A novel multi-feature model predictive control framework for seismically excited high-rise buildings

  • Katebi, Javad;Rad, Afshin Bahrami;Zand, Javad Palizvan
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.537-549
    • /
    • 2022
  • In this paper, a novel multi-feature model predictive control (MPC) framework with real-time and adaptive performances is proposed for intelligent structural control in which some drawbacks of the algorithm including, complex control rule and non-optimality, are alleviated. Hence, Linear Programming (LP) is utilized to simplify the resulted control rule. Afterward, the Whale Optimization Algorithm (WOA) is applied to the optimal and adaptive tuning of the LP weights independently at each time step. The stochastic control rule is also achieved using Kalman Filter (KF) to handle noisy measurements. The Extreme Learning Machine (ELM) is then adopted to develop a data-driven and real-time control algorithm. The efficiency of the developed algorithm is then demonstrated by numerical simulation of a twenty-story high-rise benchmark building subjected to earthquake excitations. The competency of the proposed method is proven from the aspects of optimality, stochasticity, and adaptivity compared to the KF-based MPC (KMPC) and constrained MPC (CMPC) algorithms in vibration suppression of building structures. The average value for performance indices in the near-field and far-field (El earthquakes demonstrates a reduction up to 38.3% and 32.5% compared with KMPC and CMPC, respectively.

EXTRACTION OF THE LEAN TISSUE BOUNDARY OF A BEEF CARCASS

  • Lee, C. H.;H. Hwang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.715-721
    • /
    • 2000
  • In this research, rule and neuro net based boundary extraction algorithm was developed. Extracting boundary of the interest, lean tissue, is essential for the quality evaluation of the beef based on color machine vision. Major quality features of the beef are size, marveling state of the lean tissue, color of the fat, and thickness of back fat. To evaluate the beef quality, extracting of loin parts from the sectional image of beef rib is crucial and the first step. Since its boundary is not clear and very difficult to trace, neural network model was developed to isolate loin parts from the entire image input. At the stage of training network, normalized color image data was used. Model reference of boundary was determined by binary feature extraction algorithm using R(red) channel. And 100 sub-images(selected from maximum extended boundary rectangle 11${\times}$11 masks) were used as training data set. Each mask has information on the curvature of boundary. The basic rule in boundary extraction is the adaptation of the known curvature of the boundary. The structured model reference and neural net based boundary extraction algorithm was developed and implemented to the beef image and results were analyzed.

  • PDF

A Real-Time Stock Market Prediction Using Knowledge Accumulation (지식 누적을 이용한 실시간 주식시장 예측)

  • Kim, Jin-Hwa;Hong, Kwang-Hun;Min, Jin-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.109-130
    • /
    • 2011
  • One of the major problems in the area of data mining is the size of the data, as most data set has huge volume these days. Streams of data are normally accumulated into data storages or databases. Transactions in internet, mobile devices and ubiquitous environment produce streams of data continuously. Some data set are just buried un-used inside huge data storage due to its huge size. Some data set is quickly lost as soon as it is created as it is not saved due to many reasons. How to use this large size data and to use data on stream efficiently are challenging questions in the study of data mining. Stream data is a data set that is accumulated to the data storage from a data source continuously. The size of this data set, in many cases, becomes increasingly large over time. To mine information from this massive data, it takes too many resources such as storage, money and time. These unique characteristics of the stream data make it difficult and expensive to store all the stream data sets accumulated over time. Otherwise, if one uses only recent or partial of data to mine information or pattern, there can be losses of valuable information, which can be useful. To avoid these problems, this study suggests a method efficiently accumulates information or patterns in the form of rule set over time. A rule set is mined from a data set in stream and this rule set is accumulated into a master rule set storage, which is also a model for real-time decision making. One of the main advantages of this method is that it takes much smaller storage space compared to the traditional method, which saves the whole data set. Another advantage of using this method is that the accumulated rule set is used as a prediction model. Prompt response to the request from users is possible anytime as the rule set is ready anytime to be used to make decisions. This makes real-time decision making possible, which is the greatest advantage of this method. Based on theories of ensemble approaches, combination of many different models can produce better prediction model in performance. The consolidated rule set actually covers all the data set while the traditional sampling approach only covers part of the whole data set. This study uses a stock market data that has a heterogeneous data set as the characteristic of data varies over time. The indexes in stock market data can fluctuate in different situations whenever there is an event influencing the stock market index. Therefore the variance of the values in each variable is large compared to that of the homogeneous data set. Prediction with heterogeneous data set is naturally much more difficult, compared to that of homogeneous data set as it is more difficult to predict in unpredictable situation. This study tests two general mining approaches and compare prediction performances of these two suggested methods with the method we suggest in this study. The first approach is inducing a rule set from the recent data set to predict new data set. The seocnd one is inducing a rule set from all the data which have been accumulated from the beginning every time one has to predict new data set. We found neither of these two is as good as the method of accumulated rule set in its performance. Furthermore, the study shows experiments with different prediction models. The first approach is building a prediction model only with more important rule sets and the second approach is the method using all the rule sets by assigning weights on the rules based on their performance. The second approach shows better performance compared to the first one. The experiments also show that the suggested method in this study can be an efficient approach for mining information and pattern with stream data. This method has a limitation of bounding its application to stock market data. More dynamic real-time steam data set is desirable for the application of this method. There is also another problem in this study. When the number of rules is increasing over time, it has to manage special rules such as redundant rules or conflicting rules efficiently.

Tuning Rules of the PID Controller Based on Genetic Algorithms (유전알고리즘에 기초한 PID 제어기의 동조규칙)

  • Kim, Do-Eung;Jin, Gang-Gyoo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2167-2170
    • /
    • 2002
  • In this paper, model-based tuning rules of the PID controller are proposed incorporating with genetic algorithms. Three sets of optimal PID parameters for set-point tracking are obtained based on the first-order time delay model and a genetic algorithm as a optimization tool which minimizes performance indices(IAE, ISE and ITAE). Then tuning rules are derived using the tuned parameter sets, potential rule models and a genetic algorithm. Simulation is carried out to verify the effectiveness of the proposed rules.

  • PDF