• Title/Summary/Keyword: Rudder turn

Search Result 23, Processing Time 0.028 seconds

MANOEUVRABILITIES OF THE M.S. 'SAEBADA' ('새바다호의'의 조종성능에 관한 연구)

  • KIM Ki Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.209-215
    • /
    • 1979
  • The manoeuvrabilities of a ship are decided by the values of her manoeuvring indices. The manoeuvring indices consist of two kinds: indices K and T. The former decides a ship's turning ability and the latter, the length of time delay to a steady turning motion after her rudder has finished the turn of an ordered angle. In this paper, the author figured out the values of the manoeuvring indices of the m. s. 'SAEBADA' (GT: 2,275,7 ton), the training ship of tile National Fisheries University of Busan through her Z test and analyzed these values and the other data which were obtained from her Z test to study her manoeuvrabilities. The results of]tamed are summarized as follows: 1. The manoeuvring indices K' of the m. s. 'SAEBADA' were $1.052(at\;10{\circ}\;Z\;test)\;0.925(at\;20{\circ}\;Z\;test)\;and\;0.877(at\;30{\circ}\;Z\;test)$. Her manoeuvring indices $0.815(at\;10{\circ}\;Z\;test)\;0.502(at\;20{\circ}\;Z\;test)\;and\;0.441(at\;30{\circ}\;Z\;test)$. Her above calculated values K', T' showed that her obeying ability to the turn of her rudder was more increased when her rudder was used to large angle than to small angle, but on the other hand in this case her turning ability was slightly reduced. 2. As it appeared that the calculated K'-values of the m.s. 'SAEBADA' were slightly smaller than the standard K'-values of the fishing boats similar in length, and her overshoot angles at her Z test were greater than other general ships, her turning ability was found to t]e slightly lower. 3. When the m. s. 'SAEBADA' took a turn at her $10^{\circ}\;Z$ test, running distance was about 8.6 times her own length and didn't exceed the standard manoeuvrability distance, 5 to 11 times general ships' own length, therefore she was considered to have a good manoeuvrability synthetically.

  • PDF

Effect of Transient Condition on Propeller Shaft Movement during Starboard Turning under Ballast Draught Condition for the 50,000 DWT Oil Tanker (50,000 DWT 유조선의 밸러스트 흘수에서 우현 전타시 과도상태가 프로펠러축 거동에 미치는 영향 연구)

  • Lee, Jae-ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.412-418
    • /
    • 2020
  • Generally, the propeller shaft that constitutes the ship shaft system has different patterns of behavior due to the ef ects of engine power, propeller load and eccentric thrust, which increases the risk of bearing failure by causing local load variations. To prevent this, different studies of the propulsion shaft system have been conducted focused the relative inclination angle and oil film retention between the shaft and the support bearing, mainly with respect to the Rules for the Classification of Steel Ships. However, in order to secure the stability of the propulsion shaft via a more detailed evaluation, it is necessary to consider dynamic conditions, including the transient state due to sudden change in the stern wakefield. In this context, a 50,000 DWT vessel was analyzed using the strain gauge method, and the effects of propeller shaft movement were analyzed on the starboard rudder turn which is a typical transient state during normal continuous rate(NCR) operation in ballast draught condition. Analysis results confirm that the changed propeller eccentric thrust acts as a force that temporarily pushes down the shaft to increase the local load of the stern tube bearing and negatively affects the stability of the shaft system.

A Study of Contents Arrangement in Conning Display (선박항법기기 화면의 배치에 관한 연구)

  • Yoon, Hoon-Yong;Kim, Kyung-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.154-161
    • /
    • 2010
  • The conning display which is located in the ship bridge shows the various important information such as ship position, ship speed, track data, rate of turn, thruster rpm so on, and is one of the IBSs(Integrated Bridge Systems). In this study, the survey was conducted for ten officers to find the importance and using frequency of the information which were displayed in the conning display. The results showed that the information of drift speed, ship speed, wind direction and wind force, rate of turn, sea water depth, ship position, heading, thrust rpm, alarm, rudder command and angle got high scores and it meant that these information were very important and high frequency of use during the navigation. The optimized contents arrangement in conning display was suggested based on importance and using frequency of information. The experiment using eye-tracking system was conducted to compare the performance time and error rate of nine different scenarios for suggested arrangement display and three other existing displays. The results showed that the suggested arrangement was the best in performance time and error rate. The scenario concerning the direction and speed of wind showed faster performance time and lower error rate than other scenarios. The movement of subject's eye tended to search from the center and to avoid the comer, called 'the comer effect.' It is expected that the results of this study could help for the bridge staff to grasp the sailing information easily and to cope with the given situations promptly.

A Study on the Maneuverabilities of the Training Ship M.S.HEUIMANGBONG (실습선 희망봉호의 조정성능에 관한 연구)

  • Park, Seok-Pil;Kim, Gi-Yun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.62-66
    • /
    • 1998
  • The maneuverabilities of the training ship M.S. HEUIMANGBONG were studied, based on the data obtained from her Z test. The results obtained were summerized as follows: 1. The maneuvering indices K' and T'of the M.S. HEUIMANGBONG were 0.542, 1.305 at 10$^{\circ}$Z Test and 0.433, 1.351 at 20$^{\circ}$Z test and 0.442, 1.388 at 30$^{\circ}$Z test respectively. The above calculated values K', T' showed that her maneuverabilities were more effective when her rudder was used to small angle than to large angle. 2. As the overshoot angles of the starbord side of the M.S. HEUIMANGBONG were larger than those of port side at 10$^{\circ}$, 20$^{\circ}$and 30$^{\circ}$Z test, her maneuverabilities in port turning were found to be higher than in starbord turning. 3. The running distance of a turn at her 10$^{\circ}$Z test was about 9.9 times her own length and she was considered to have a good maneuverabilities synthetically

  • PDF

GA-LADRC based control for course keeping applied to a mariner class vessel (GA-LADRC를 이용한 Mariner class vessel의 선수각 제어)

  • Jong-Kap AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.145-154
    • /
    • 2023
  • In this study, to control the heading angle of a ship, which is constantly subjected to various internal and external disturbances during the voyage, an LADRC (linear active disturbance rejection control) design that focuses more on improving the disturbance removal performance was proposed. The speed rate of change of the ship's heading angle due to the turn of the rudder angle was selected as a significant factor, and the nonlinear model of the ship's maneuvering equation, including the steering gear, was treated as a total disturbance. It is the similar process with an LADRC design for the first-order transfer function model. At this time, the gains of the controller included in LADRC and the gains of the extended state observer were tuned to RCGAs (real-coded genetic algorithms) to minimize the integral time-weighted absolute error as an evaluation function. The simulation was performed by applying the proposed GA-LADRC controller to the heading angle control of the Mariner class vessel. In particular, it was confirmed that the proposed controller satisfactorily maintains and follows the set course even when the disturbances such as nonlinearity, modelling error, uncertainty and noise of the measurement sensor are considered.

Estimating Hydrodynamic Coefficients of Real Ships Using AIS Data and Support Vector Regression

  • Hoang Thien Vu;Jongyeol Park;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.198-204
    • /
    • 2023
  • In response to the complexity and time demands of conventional methods for estimating the hydrodynamic coefficients, this study aims to revolutionize ship maneuvering analysis by utilizing automatic identification system (AIS) data and the Support Vector Regression (SVR) algorithm. The AIS data were collected and processed to remove outliers and impute missing values. The rate of turn (ROT), speed over ground (SOG), course over ground (COG) and heading (HDG) in AIS data were used to calculate the rudder angle and ship velocity components, which were then used as training data for a regression model. The accuracy and efficiency of the algorithm were validated by comparing SVR-based estimated hydrodynamic coefficients and the original hydrodynamic coefficients of the Mariner class vessel. The validated SVR algorithm was then applied to estimate the hydrodynamic coefficients for real ships using AIS data. The turning circle test wassimulated from calculated hydrodynamic coefficients and compared with the AIS data. The research results demonstrate the effectiveness of the SVR model in accurately estimating the hydrodynamic coefficients from the AIS data. In conclusion, this study proposes the viability of employing SVR model and AIS data for accurately estimating the hydrodynamic coefficients. It offers a practical approach to ship maneuvering prediction and control in the maritime industry.

The Effect of the Speed of a Ship on Her Turning Circle (선속이 선회권에 미치는 영향에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.209-214
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

  • PDF

The Effect of the Speed of a Ship on Her Turning Circle (선속이 선회권에 미치는 영향에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.210-210
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

Maneuverabilities of the M . S . Pusan 404 (부산 404호의 조종성능에 관한 연구)

  • Min-Seok Kim;Ki-Yun Kim
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.3
    • /
    • pp.133-133
    • /
    • 1989
  • The maneuverabilities of the M.S. Pusan 404 are studied, based on maneuvering indices and the data obtained from her Z test. The results obtained are summarized as follows: 1. The maneuvering indices K' and T' of the M.S Pusan 404 are 0.9359, 0.1955 at 10° Z test and 0.9781, 0.5802 at 20° Z test and 0.9108, 0.7090 at 30° Z test respectively. The above calculated values K', T' showed that her maneuverabilities are more effective when the rudder is used to small angle than to large angle. 2. As her maneuvering indices K' and T' at 10° Z test are smaller than the standard maneuvering indices of fishing boats, her turning ability was found to be lower but her obeying ability higher. 3. the running distance of a turn at her 10° Z test was about 8.7 times her own len호 and she was considered to have good maneuverabilities synthetically.

Maneuverabilities of the M . S . Pusan 404 (부산 404호의 조종성능에 관한 연구)

  • Kim, Min-Seok;Kim, Gi-Yun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.3
    • /
    • pp.125-128
    • /
    • 1989
  • The maneuverabilities of the M.S. Pusan 404 are studied, based on maneuvering indices and the data obtained from her Z test. The results obtained are summarized as follows: 1. The maneuvering indices K' and T' of the M.S Pusan 404 are 0.9359, 0.1955 at 10$^{\circ}$ Z test and 0.9781, 0.5802 at 20$^{\circ}$ Z test and 0.9108, 0.7090 at 30$^{\circ}$ Z test respectively. The above calculated values K', T' showed that her maneuverabilities are more effective when the rudder is used to small angle than to large angle. 2. As her maneuvering indices K' and T' at 10$^{\circ}$ Z test are smaller than the standard maneuvering indices of fishing boats, her turning ability was found to be lower but her obeying ability higher. 3. the running distance of a turn at her 10$^{\circ}$ Z test was about 8.7 times her own len호 and she was considered to have good maneuverabilities synthetically.

  • PDF