• Title/Summary/Keyword: Rubrene

Search Result 70, Processing Time 0.022 seconds

열처리 조건에 따른 Rubrene 박막의 결정 특성 변화 연구

  • Yun, Yeong-Un;Kim, Song-Hui;Lee, Han-Ju;Kim, Tae-Dong;Lee, Gi-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.124-124
    • /
    • 2009
  • We observed the changes of crystal structure of Rubrene (5,6,11,12-tetraphenylnaphthacene) polycrystal thin films at various in situ substrate temperature and process by scanning electron microscope(SEM), x-ray diffraction (XRD) and near-field microwave microprobe (NFMM). Amorphous rubrene thin film was initially obtained on 200 nm thick $SiO_2/Si$ substrate at 35 $^{\circ}C$ in a vacuum evaporation but in situ long time postannealing at the temperature 80 $^{\circ}C$ transformed the amorphous phase into crystalline. Four heating conditions are followed : (a) preheating (b) annealing (c) preheating, annealing (d) preheating, cooling(35 $^{\circ}C$), annealing. We have obtained the largest polycrystal disk in sample (c). But the highest crytallity and conductivity of the rubrene thin films were obtained in sample (d).

  • PDF

Growth of Rubrene Crystalline Wire via Solvent-vapor Annealing

  • Park, Ji-Hoon;Choi, Jeong-M.;Lee, Kwang-H.;Mun, Sung-Jin;Ko, G.;Im, Seong-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.871-873
    • /
    • 2009
  • We report on the growth of rubrene ($C_{42}H_{28}$) wire fabricated by thermal evaporation, followed by solvent-vapor annealing for the application of organic thin film transistor. Solvent-vapor annealing was carried out in precisely controlled vapor pressure at elevated temperature. Micro-sized, and elongated rubrene wire was obtained via solvent annealing process reproducibly. Optical image and XRD data shows highly crystalline quality of rubrene wire.

  • PDF

The Luminescent Properties of Red OLED Devices Doped with Two Dopants (2원 첨가 적색 OLED 소자의 발광특성)

  • Kim, Kyong-Min;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.531-535
    • /
    • 2007
  • To invest the luminescent characteristics of red light emitting OLED device, a dual dopant system was incorporated into the emitting layer. The multiple layer OLED device structure was $ITO(1500\;{\AA})/HIL(200\;{\AA})/a-NPD(600\;{\AA})/EML(300\;{\AA})/Alq_3(200\;{\AA})/LiF(7\;{\AA})/Al(1800\;{\AA})$. The concentrations of the rubrene dopant were tested at 0 vol.%, 3 vol.%, 6 vol.% and 9 vol.%. The maximum device efficiency and life time were obtained at the rubrene dopant concentration of 6 vol.%. Emission spectrum and color coordinate of devices showed no relationship with rubrene dopant concentration. Experiment results show that rubrene dopant absorbs energy from $Alq_3$ host and transfer it to RD1 dopant acting as an energy intermediate and influencing the device efficiency, finally the red light is emitted from the RD1 dopant.

Electrical and Optical Characteristics of White OLEDs with a Rubrene doped Layer (Rubrene 도핑층을 이용한 백색 OLEDs의 전기 및 광학적 특성)

  • Moon, Dae-Gyu;Lee, Chan-Jae;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.53-56
    • /
    • 2007
  • We have fabricated organic white light emitting diodes by mixing two colors from very thin rubrene doped and non-doped DPVBi layers. The device structure was ITO/2-TNATA(15 nm)/${\alpha}$-NPD(35 nm)/DPVBi:rubrene(5 nm)/DPVBi(30 nm)/$Alq_{3}(5\;nm)$/BCP(5 nm)/LiF(0.5 nm)/Al(150 nm). The yellow-emitting rubrene of 0.7 wt % was doped into the blue-emitting DPVBi host for the white light. CIE coordinate of the device was (0.31, 0.33) at 8 V. The color coordinates were stable at wide ranges of driving voltages. The luminance was over $1,000\;cd/m^{2}$ at 8 V and increases to $14,500\;cd/m^{2}$ at 12 V. The maximum current efficiency of the device was 8.2 cd/A at $200\;cd/m^{2}$.

Emission Characteristics of Red OLEDs with Fluorescent and Phosphorescent Dopant (형광과 인광 첨가제에 의한 적색 OLED 소자의 발광 특성)

  • Park, Yeon-Suk;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1039-1044
    • /
    • 2009
  • Red color OLED has been fabricated by the doping method apply to CBP using co-evaporation, GDI4349 of phosphorescent dopant, and rubrene of fluorescent dopant. The OLED structure are multi-layer of ITO(150 nm)/ELM_HIL(50 nm)/ELM_HTL(30 nm)/CBP : Rubrene, GDI4349 (30 nm)/BAlq (30 nm)/LiF(0.7 nm)/Al (100 nm). Accomplished best result at 3 vol.% of rubrene when the OLEDs were made of 1, 3, 5, 7, 9 vol.% doped rubrene. The highest efficiency of 7.2 cd/A was resulted at 8 vol.% of GDI4349 when the OLEDs were made among 5, 8, 11, 14 vol.% of GDI4349. Obviously, the best concentration of rubrene at 3 vol.% and changing GDI4349 concentration to 5, 8, 11, 14 vol.% OLED dramatically enhanced characteristic of resulted 10.7 cd/A at 8 vol.% of GDI4349. This result would understand to analyse as the emission efficiency increases by energy transport efficiency increase using GDI4349 energy transfer when rubrene absorbs the energy from CBP of fluorescences host.

Fabrication and Characterization of Red Emitting OLEDs using the Alg3:Rubrene-GDI4234 Phosphor System (Alg3:Rubrene-GDI4234 형광 시스템을 이용한 적색 OLED의 제작과 특성 평가)

  • Jang Ji-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.437-441
    • /
    • 2006
  • The red emitting OLEDs using $Alq_3$:Rubrene-GDI4234 phosphors have been fabricated and characterized . In the device fabrication, 2- TNATA [4,4',4' - tris (2- naphthylphenyl - phenylamino ) - tripheny lamine] as the hole injection material and NPB [N,N'-bis (1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as the hole transport material were deposited on the ITO(indium tin oxide)/glass substrate by vacuum evaporation. And then, red color emissive layer was deposited using $Alq_3$ as the host material and Rubrene(5,6,11,12-tetraphenylnaphthacene)-GDI4234 as the dopants. finally, small molecule OLEDs with structure of ITO/2-TNATA/NPB/$Alq_3$:Rubrene-GDI4234/$Alq_3$/LiF/Al were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. Red OLEDs fabricated in our experiments showed the color coordinate of CIE(0.65, 0.35) and the maximum power efficiency of 2.1 lm/W at 7 V with the peak emission wavelength of 632 nm.

전하생성층을 사용하여 제작한 백색유기발광소자의 발광 메커니즘과 색안정성에 대한 연구

  • Jo, In-Hwan;Jeon, Yeong-Pyo;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.143.2-143.2
    • /
    • 2015
  • 백색유기발광소자는 저전력, 높은 명암비 및 빠른 응답속도와 넓은 시야각 등의 장점을 가지고 있어 대형 디스플레이, 모바일 디스플레이, 백색 광원 등에 사용되는 차세대 광원으로써 각광 받고 있고 이를 상용화하기 위해 많은 연구가 진행되고 있다. 하지만 다층 발광층을 가지는 백색유기발광소자는 발광층에 지역이 인가된 전압에 의해 바뀌어 색안정성이 떨어진다는 단점을 가지고 있다. 본 연구에서는 백색유기발광소자의 발광 메커니즘 규명하고 색안정성을 고찰하였다. 이 백색유기발광 소자는 indium-tin-oxide (ITO) 양극전극에 진공 증착 방법을 통해 전하생성층으로 tungsten oxide(WO3)층과 5,6,11,12-tetraphenyltetracene(rubrene)가 도핑된 N,N',-bis-(1-naphthyl)-N,N'-diphenyl1-1'-biphenyl-4,4'-diamine(NPB)층을 사용하여 제작되었다. ITO를 양극으로, NPB를 정공수송층으로, DPVBi를 발광층으로, 4,7-diphenyl-1,10-phenanthroline(BPhen)을 전자수송층으로, WO3와 0, 1, 2, 또는 3 wt% rubrene 도핑된 NPB를 전하생성층으로, Liq를 전자주입지연층으로, Al을 음극 전극으로 각각 사용하였다. 전하생성층으로 사용한 NPB층의 rubrene 도핑농도가 변화하여 백색유기발광소자의 발광 메커니즘을 규명하였다. rubrene 도핑된 NPB층에서 발광하는 노란빛과 발광층에서 발생하는 파란빛에 의해 백색광을 방출, NPB층에 도핑된 rubrene 도핑 농도가 증가할수록 소자의 전류밀도와 밝기가 증가했다.

  • PDF

Stacked Emissive 구조를 이용한 2-파장 방식의 백색 유기 발광다이오드

  • Jang, Ji-Geun;Kim, Hui-Won;Gang, Ui-Jeong;Sin, Se-Jin;An, Jong-Myeong;Sin, Hyeon-Gwan;Jang, Ho-Jeong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.190-197
    • /
    • 2006
  • 2파장 백색 발광층의 구성에서 청색 재료로 GDI602 또는 GDI602: GDI691(2%)을, 황색 재료로 Alq3:Rubrene(10%)를 사용하여 새로운 백색 유기발광다이오드를 제작하고 이들의 특성을 분석하였다. 제작된 소자들은 12V의 구동전압에서 GDI602/A1q3:Rubrene(10%) 발광층을 갖는 경우 약 $950\;Cd/m^2$의 휘도와 0.8 lm/W의 효율을, GDI602:GDI691(2%)/Alq3:Rubrene 발광층을 갖는 경우 약 $1800\;Cd/m^2$의 휘도와 1.2 lm/W의 효율을 나타내었다. 또한 발광 스펙트럼의 특성으로는 인가전압에 따라 중심파장의 위치는 일정하나 2파장 사이의 상대적 세기가 변화되었으며, 인가전압이 증가할 경우 CIE 색좌표가 청색 방향으로 다소 이동되었다. GDI602/ Alq3:Rubrene(10%) 발광층을 갖는 소자의 경우 9V에서 x=0.33, y=0.32로, GDI602:GDI691(2%)/Alq3:Rubrene 발광층을 갖는 소자의 경우 6V에서 x=0.32, y=0.33으로 순수 백색광에 가까운 특성이 얻어졌다.

  • PDF

발광층에 Dotted-Line Doping Structure(DLDS)를 적용한 Red-Oranic Light-Emitting Diodes(OLEDs)의 발광특성

  • Lee, Chang-Min;Han, Jeong-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.177-180
    • /
    • 2004
  • 발광층에 Alq3와 rubrene을 mixed host로 사용하고 DCJTB를 형광 dopant로 사용한 다층 박막 구조의 red OLEDs를 제작하였다. 소자의 구조는 $ITO:Anode(120nm)/{\alpha}-NPD:HTL(40nm)/Alq_3+Rubrene(mixed\;host\;1:1)+DCJTB(red\;dopant\;3%)+:EML(20nm)/Alq_3:ETL(40nm)/MgAg(Mg\;5%\;wt):Cathode(150nm)$ 로서 EML내부에 DCJTB를 Totally Doping Method와 Dotted-Line Doping Method의 두 가지 방법으로 도핑 하였다. Mixed host구조에 DCJTB를 6구간으로 나누어 Dotted Line Doping한 소자는 luminance yield가 $9.2cd/A@10mA/cm^2$ 이었다. 이 소자는 DCJTB만을 Totally Doping한 소자의 luminance yield $3.2cd/A@10mA/cm^2$에 비해 약 190%정도의 높은 효율 향상을 보였다. 또한 $10mA/cm^2$에 도달하는 전압은 5.5V Vs. 8.5V로서 mixed host를 사용한 소자에서 약 3V정도 구동전압이 낮아지는 효과가 있었다. 발광 스펙트럼의 Full Width Half Maximum(FWHM)은 각각 56.6nm와 61nm로서 rubrene을 mixed host로 사용한 소자에서 높은 색 순도를 얻을 수 있었다. 이러한 성능의 향상은 $Alq_3$와 혼합된 rubrene에 의한 낮은 전하주 입장벽, 높은 전류밀도에서 나타나는 발광감쇄현상의 감소, 그리고 발광층의 DLD구조에 의한 전하의 trap & confinement 에 따른 발광 exciton의 형성확률이 증가한데서 나타났다고 생각된다.

  • PDF

White Oganic Light-Emitting Diodes based on Simply Modified Anthracene and Rubrene (안트라센의 단순 유도체와 루브렌을 이용한 백색 유기전기발광소자)

  • Kim, Si-Hyun;Lee, Seung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.589-595
    • /
    • 2022
  • The white OLED is fabricated with the anthracene-based blue emitting material, 9-(2-naphthyl)-10-(p-tolyl)anthracene (2-NTA) in various volume-ratios of orange dopant, rubrene, which results in pure white emission with C.I.E. coordinate of ~(0.32, 0.39). The devices with <1.5% rubrene show better EL properties (efficiency) than >3% devices. Furthermore the turn-on voltage of 2-NTA WOLED (3.7 V) is lower than that of 2-NTA blue OLED (5.4 V) at the same condition. Conclusively 2-NTA with rubrene less than 1.5% (v/v) could be utilized for the pure WOLED.