• 제목/요약/키워드: Rubber Pressure

검색결과 332건 처리시간 0.025초

철도차량용 공기스프링 실차시험 및 신뢰성 평가 (Reliability Evaluation of Air Spring for Railway Vehicle)

  • 우창수;김완두;최경진
    • 한국철도학회논문집
    • /
    • 제8권2호
    • /
    • pp.182-187
    • /
    • 2005
  • Air spring system was widely accepted for railway vehicle secondary suspension to reduce and absorb the vibration and noise. The low natural frequency ensures a comfortable ride and an invariably good stiffness. In this paper, the characteristics and durability test was conducted in laboratory by using servo-hydraulic fatigue testing system to reliability evaluation of air spring for electric railway vehicle. The experimental results show that the characteristics and durability of domestically developed productions are shown in good results. And to guarantee the adaption of air spring, the ride comfort and air pressure variation were measured in train test on subway line.

승용차 실내소음의 전달경로 해석 (Transfer Path Analysis on the Passenger Car Interior Noise)

  • 지태한;최윤봉
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.97-102
    • /
    • 1999
  • Structure-borne noise is an important aspect to consider during the design and development of a vehicle. In this work. it was desired to identify the primary paths associated with structure-borne noise generated from the engine and front suspension. An experimental source-path-receiver model was used to characterize the system. A variety of primary sources such as engine. tires or exhaust system generate vibrations of the inner surfaces of the passenger compartment of a vehicle which subsequently radiate noise. The source was characterized by the force acting at the engine-to-body interface. and the path was characterized by pressure over force FRF's. The excitation forces were indirectly determined using dynamic stiffness of rubber mount or the system accelerance matrix. Through these analysis, path contribution diagram which is well expressed primary noise path is obtained.

  • PDF

냉장고용 왕복동식 압축기의 가진력 규명 및 방사소음 예측 (Force Identification and Sound Prediction of a Reciprocating Compressor for a Refrigerator)

  • 김상태;전경진;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제22권5호
    • /
    • pp.437-443
    • /
    • 2012
  • In this paper, the hybrid method to identify the exciting forces and radiated noise generated from the reciprocating compressor was presented. In order to identify the exciting force, both the acceleration data measured at the compressor shell and numerical finite element model for the full set of compressor were used simultaneously. Applying the identified exciting forces to the numerical model, the velocity responses of all nodes at the shell were predicted. Finally the radiated noises from the vibrating shell were predicted by using the direct boundary element acoustic analysis. For precise numerical modeling, the stiffness of rubber mounts and body springs were identified experimentally from the natural frequencies measured by impact testing. The error of over-all sound pressure level between predicted noise and measured noise was about 2.9 dB.

LPG 충전노즐용 O-링과 패킹의 응력거동해석에 관한 연구 (Stress Behavior Analysis of O-rings and Packing for a LPG Filling Nozzle)

  • 김청균
    • Tribology and Lubricants
    • /
    • 제22권1호
    • /
    • pp.20-25
    • /
    • 2006
  • The stress behavior analysis of a-rings and packing for a LPG filling unit has been presented using a finite element analysis technique by non-linear MSC/MARC program. The sealing performance and endurance of a-rings and packing are affected by working conditions such as filling pressure, friction coefficient, compression ratio, and material properties. The elastomeric polymers of O-rings and packing are nitrile butadiene rubber (NBR) and polytetrafluoroethylene (PTFE), which are selected as proper materials of a-rings and packing based on the stress analysis results. The calculated FEM results showed that the proper material of O-ring is NBR as a secondary sealing component and the recommended material of packing is PTFE as a primary sealing unit during a LPG filling process.

체결단계를 고려한 승용차용 에어스프링 정특성 설계해석기법 개발 (Static FE Analysis of Air Springs for Passenger Cars Considering the Mounting Steps)

  • 이형욱;H.ThomasHahn;박진용
    • 소성∙가공
    • /
    • 제24권6호
    • /
    • pp.387-394
    • /
    • 2015
  • Air springs are designed to support loads using the volume elasticity in a cylindrical shaped air bag made of a composite material with a rubber matrix and two plies of reinforced fibers. Recently, applications of these springs have been expanded from railway vehicles to passenger cars. The current study presents a finite element analysis of a manufactured air spring for a passenger car. The analysis was conducted including the mounting steps of the air bag using a static loading condition. A method for controlling the internal pressure and displacements during the mounting step was developed. The characteristic load curve and the shape of the air bag were in good agreement with the experimental data with respect to the design height, the bump height and the rebound height. Results indicate that ply angles of fibers vary from 38 degrees to 56 degrees during static loading.

철도차량용 공기 스프링의 정적 특성 시뮬레이션 (Simulation of Static Characteristics of Railway Vehicle's Airspring)

  • 허신;구정서;우창수;김유일
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.15-24
    • /
    • 1996
  • In this study, we performed the static analysis of a cord-reinforced rubber airspring and generated the three-dimensional half-symmetry model which use the finite-strain shell elements to model the airbag. the three-dimensional hydrostatic fluid elements to model the air-filled cavity, and the rebar elements to model the multi-ply nylon reinforcement of airbag. In addition, a three-dimensional rigid surface is used to define the contact between the airspring and metal bead. The air inside the airspring cavity has been modeled as a compressible fluid satisfying the ideal gas law. The conclusions of this study are as follows. 1) In the pressurization step of analysis, we could predict the change of vertical reaction force, cavity volume and pressure within the airspring. 2) In the second step of analyzing vertical static stiffness, the increase of the vertical load increases the vertical stiffness. 3) In case of changing the angle of nylon cord, the increase the angle of nylon cord increases the vertical stiffness.

  • PDF

Surface Modification of Automobile Rubber by Various Plasma Treatments

  • Lee, Seung-Hun;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • 제9권1_2호
    • /
    • pp.26-30
    • /
    • 2008
  • This study examined the surface modification characteristics of NBR using sealing in automobile. Surfaces of NBR were modified by RF power Ar plasma treatment. In experiment, pressure, flux, temperature were fixed and RF bias voltage. Treatment time was changed. In friction test, we used PTFE grease. After modification, surfaces of NBR showed many grooves, hydrophilic functional groups, and lipophilic functional groups. As increasing treating voltage and time, the amount of them was increased. And wetting angle and friction coefficient was decreased with increasing treating voltage and time. However, the pattern of changing friction coefficient was not fixed.

전단흐름 하에 이온교환막 위에서 발생하는 전기수력학적 와류 (Electroconvective vortex on an Ion Exchange Membrane under Shear Flow)

  • 곽노균
    • 한국가시화정보학회지
    • /
    • 제16권1호
    • /
    • pp.61-69
    • /
    • 2018
  • Ion exchange membrane can transfer only cation or anion in electrically conductive fluids. Recent studies have revealed that such selective ion transport can initiate electroconvective instability, resulting vortical fluid motions on the membrane. This so-called electroconvective vortex (a.k.a. electroconvection (EC)) has been in the spotlight for enhancing an ion flux in electrochemical systems. However, EC under shear flow has not been investigated yet, although most related systems operate under pressure-driven flows. In this study, we present the direct visualization platform of EC under shear flow. On the transparent silicone rubber, microscale channels were fabricated between ion exchange membranes, while allowing microscopic visualization of fluid flow and ion concentration changes on the membranes. By using this platform, not only we visualize the existence of EC under shear flow, its unique characteristics are also identified: i) unidirectional vortex pattern, ii) its advection along the shear flow, and iii) shear-sheltering of EC vortices.

균일 분포하중을 주는 플렛와이퍼 스프링레일의 곡면형상식 유도 (The Curve Equation of a Flat Wiper Spring Rail Inducing Uniformly Distributed Loads)

  • 윤영삼;김철
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.79-83
    • /
    • 2010
  • Recently, the flat wiper which is one piece wiper and subjected to a pressing force at a single center point is gaining wide applications on automotive windshields. However, nonuniform reactive pressure distributions takes place, so that wiping is not completed at such locations. The wiping performance of the flat wiper is best when a wiper and a curved windshield have perfect contact without gaps under the specified pressing force of 13 ~ 15 gf/cm. Therefore, it is necessary that the realistic curvature equation of a wiper spring-rail should be obtained. Finite element analysis, CATIA script-macro function, and the least square method were utilized to find out the curvature of a spring-rail for a perfect contact with a windshield under a specified concentrated load. The curvature equation became the third order polynomial.

건설기계 엔진마운트 최적설계에 관한 실용적 연구 (A Practical Research of Engine Mount Optimization in a Construction Equipment)

  • 신명호;주경훈;김우형;김인동;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.792-796
    • /
    • 2013
  • A practical process to optimize engine mounts on construction equipment is presented in this research. Transmitted force from the engine is estimated by using stiffness of the mount rubber which varies with frequency, amplitude and pre-load, and by the engine excitation force that comes from piston mass and gas pressure and so on. The transmitted force is measured through TPA(Transfer Path Analysis) and is then compared with the estimated force. The optimum mount position and stiffness are solved using MATLAB. The result shows the improvement on engine mount vibration.

  • PDF