• 제목/요약/키워드: Rubber Materials

검색결과 1,022건 처리시간 0.024초

Corrosion of Silver by Outgassing from Rubber

  • Sakai, Jun'ichi;Omoda, Masataka;Ishikawa, Yuichi
    • Corrosion Science and Technology
    • /
    • 제7권2호
    • /
    • pp.130-133
    • /
    • 2008
  • Corrosion of silver by outgassed sulfur species from rubber has been investigated by means of quartz crystal microbalance technique (QCM) and cathodic reduction technique. Silver specimens were placed together with a rubber of predefined quantity in an enclosed environment. Corrosion progressed linearly with time and silver sulfide was found as the corrosion product during all the tests. No significant dependence on RH was observed, while the corrosion rate increased as temperature rose. Furthermore the corrosion rate increased logarithmically with the quantity of the rubber placed in the exposure environment. It may be suggested that the corrosion rate of silver is determined by the amount of outgassed sulfur species which is a function of temperature and the quantity of rubber contained in the exposure environment.

실리콘/EPDM고무 블렌드의 제조와 특성에 관한 연구 (Study on Manufacturing and Characteristics of Silicone/EPDM Rubber Blend)

  • 김진국;이형규
    • 폴리머
    • /
    • 제25권3호
    • /
    • pp.406-413
    • /
    • 2001
  • 고분자의 블렌드는 새로운 성질을 가지는 재료의 제조를 위한 하나의 방법으로 제시되고 있다. 그러나 대부분의 재료는 재료사이의 점탄성, 표면에너지 그리고 상호결합력의 차이로 인하여 비상용성을 지니며, 이로 인하여 블렌드물은 예상되는 물성을 나타내지 못하는 경우가 있다. 실리콘 고무는 우수한 내열성과 전기적 성질을 가지며, ethylene propylene diene monomer (EPDM) 고무는 우수한 기계적 물성을 지니고 있다. 본 실험에서는 실리콘과 EPDM 고무의 블렌드를 통한 전기적 성질과 기계적 물성이 우수한 새로운 기능성 재료의 개발에 목적을 두었다.

  • PDF

Hydrogenations of Butadiene Rubber and Natural Rubber by Reactive Processing

  • Suchiva, K.;Boonkerd, K.
    • Elastomers and Composites
    • /
    • 제34권4호
    • /
    • pp.332-340
    • /
    • 1999
  • Hydrogenations of BR and NR performed by a noncatalytic method using p-toluenesulphonylhydrazide were carried out by reactive processing. The experimental procedures for carrying out the reaction were established. Two steps comprising premixing of the rubber with TSH followed by hydrogenation in compression mould were proved to be suitable. The percentages of hydrogenation attained by reactive processing were higher than those of the reaction carried out in solution at the same [TSH]/[C=C] ratio, reaction temperature and time. In-creasing the reaction temperature and reaction time resulted in increases of the percentage of hydrogenation. For BR, the maximum percentage of hydrogenation obtained was 36% at [TSH]/[C=C]=1/1.5. For NR, the highest percentage of hydrogenation was 34% at [TSH]/[C=C]=1/1.5. Cis-trans isomerisation was also observed to occur during hydrogenation of both BR and NR. Thermal stabilities of the hydrogenated BR and NR were shown to improve over those or the unhydrogenated counterparts.

  • PDF

천연 및 합성고무의 기계적 물성 평가 (Mechanical Properties Evaluation of Natural and Synthetic Rubber)

  • 박현성;우창수
    • Elastomers and Composites
    • /
    • 제42권1호
    • /
    • pp.32-46
    • /
    • 2007
  • 고무부품의 신뢰성을 확보하기 위해서 고무재료의 기계적 물성을 정확히 파악하는 것이 매우 중요하다. 본 연구에서는 천연 및 합성고무에 대해 다양한 환경조건에서 물성시험을 수행하여 경도, 신율 및 응력-변형률 관계와 동 특성을 파악하였다. 또한, 고무부품의 유한요소 해석에 필요한 비선형 재료상수를 단축인장과 이축인장시험을 통해 결정하였다.

실리콘 고무와 내열접착 향상을 위한 Polyethylene Terephthalate 섬유 접착층의 제조 및 특성 (Treatment and Characterization of Polyethylene Terephthalate Fibers with Silicone Rubber Adhesive for Heat-Resistant Adhesion)

  • 김지효;이상오;이재웅
    • 한국염색가공학회지
    • /
    • 제31권2호
    • /
    • pp.107-117
    • /
    • 2019
  • In case of pure rubber materials, the initial quality of the rubber materials would be excellent, however, the durability against external impact might be poor. In order to overcome the relatively low durability, textile cord could be employed with silicone rubber. We have studied the improvement of heat-resistant adhesion properties of silicone adhesives between silicone rubber and PET fibers by applying various conditions including dip solution recipe. The silicone rubber used was a platinum catalyst curing type and platinum catalyst type silicone adhesive was used as an adhesive to obtain an optimum adhesive force. Furthermore, the bonding mechanism between silicone and PET fiber was established.

An experimental and analytical study of the sound wave propagation in beam formed from rubberized concrete material

  • Salhi Mohamed;Safer Omar;Dahmane Mouloud;Hassene Daouadji Nouria;Alex Li;Benyahia Amar;Boubekeur Toufik;Badache Abdelhak
    • Earthquakes and Structures
    • /
    • 제27권2호
    • /
    • pp.127-142
    • /
    • 2024
  • The amount of wave propagation through a rubber concrete construction is the subject of the current investigation. Rubber tire waste was used to make two different types of cement mixtures. One type contains sand substitute in amounts ranging from 15% to 60% of the total volume, while the other has gravel with diameters of 3/8 and 8/15 and 15% sand in the same mixture. A wide variety of concrete forms and compositions were created, and their viscous and solid state characteristics were assessed, along with their short-, medium-, and long-term strengths. Diffusion, density, mechanical strength resistance to compressive force, and ultrasound wave propagation were also assessed. The water-to-cement ratio and plasticizer were used in this investigation. In the second part of the study, an analytical model is presented that simulates the experimental model in predicting the speed of waves and the frequencies accompanying them for this type of mixture. Higher order shear deformation beam theory for wave propagation in the rubberized concrete beam is developed, considering the bidirectional distribution, which is primarily expressed by the density, the Poisson coefficient, and Young's modulus. Hamilton's concept is used to determine the governing equations of the wave propagation in the rubberized concrete beam structure. When the analytical and experimental results for rubber concrete beams were compared, the outcomes were very comparable. The addition of rubber gravel and sandy rubber to the mixture both resulted in a discernible drop in velocities and frequencies, according to the data.

Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete

  • Li, Diyuan;Toghroli, Ali;Shariati, Mahdi;Sajedi, Fathollah;Bui, Dieu Tien;Kianmehr, Peiman;Mohamad, Edy Tonnizam;Khorami, Majid
    • Smart Structures and Systems
    • /
    • 제23권2호
    • /
    • pp.207-214
    • /
    • 2019
  • Achieving a pervious concrete (PC) with appropriate physical and mechanical properties used in pavement have been strongly investigated through the use of different materials specifically from the global waste materials of the populated areas. Discarded tires and the rubber tire particles have been currently manufactured as the recycled waste materials. In the current study, the combination of polymer, silica fume and rubber aggregates from rubber tire particles have been used to obtain an optimized PC resulting that the PC with silica fume, polymer and rubber aggregate replacement to mineral aggregate has greater compressive and flexural strength. The related flexural and compressive strength of the produced PC has been increased 31% and 18% compared to the mineral PC concrete, also, the impact resistance has been progressed 8% compared to the mineral aggregate PC and the permeability with Open Graded Fraction Course standard (OGFC). While the manufactured PC has significantly reduced the elasticity modulus of usual pervious concrete, the impact resistance has been remarkably improved.

Long Term Reliability of Fluroelastomer (FKM) O-ring after Exposure to High Pressure Hydrogen Gas

  • Choi, Myung-Chan;Lee, Jin-Hyok;Yoon, Yu-mi;Jeon, Sang-Koo;Bae, Jong-Woo
    • Elastomers and Composites
    • /
    • 제55권4호
    • /
    • pp.270-276
    • /
    • 2020
  • The long-term durability of an FKM O-ring used as parts of a hydrogen station was investigated by exposing it to high-pressure gaseous hydrogen for 1, 3, and 7 days at room temperature. Changes in its sealing force were subsequently measured at 150℃ using intermittent compression stress relaxation (CSR). No changes in the tensile properties of FKM O-ring were observed, but its initial and overall sealing forces at 150℃ significantly decreased with increasing exposure time to hydrogen gas. Microvoid formation in the FKM O-ring upon exposure to high-pressure hydrogen was minimized over time after the ring was exposed to atmospheric pressure at room temperature, which prevented changes in its tensile properties. However, applying heat accelerated FKM O-ring oxidation, which decreased its sealing force. These results indicated that identifying changes in the sealing force of rubber materials using intermittent CSR is not sufficient for monitoring changes in mechanical properties under high-pressure hydrogen atmospheres; however, it is suitable for evaluating the long-term durability of sealing materials for hydrogen station applications under similar conditions.

옥외용 고분자 절연재료의 자외선 열화특성 연구 (A Study on the Ultraviolet Aging Characteristics of Outdoor Polymeric Insulating Materials)

  • 김영성;정순옥
    • 한국재료학회지
    • /
    • 제9권4호
    • /
    • pp.409-413
    • /
    • 1999
  • Recently, the polymeric insulators have been accepted in several countries for the outdoor high voltage applications. In comparison with the conventional porcelain, polymeric insulators offer various advantages such as light weight, superior vandal resistance and better contamination performance. The outdoor polymeric insulating materials such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-ray on the surface of silicone rubber were investigated by using the weather-Ometer. The accelerated aging stresses were simulated by UV radiation, high temperature and humidity as well as water spray. These aging characteristics were examined through contact angle measurements, tracking resistance test, FT-IR and SEM/EDS analysis. The experimental results showed that tracking resistance decreases with increase in the UV-ray irradiation period. But the surface of silicone rubber kept hydrophobicity. It is found that the inorganic filler such as)$ Al(OH_3$ improves tracking resistance and the $Tio_2$is very effective in preventing degradation of silicone rubber surface from UV-ray.

  • PDF

A Correlation Between Crack Growth and Abrasion for Selected Rubber Compounds

  • Lee, Hyunsang;Wang, Wonseok;Shin, Beomsu;Kang, Seong Lak;Gupta, Kailash Chandra;Nah, Changwoon
    • Elastomers and Composites
    • /
    • 제54권4호
    • /
    • pp.313-320
    • /
    • 2019
  • A typical wear pattern was reported to resemble the fatigue crack growth behavior considering its mechanism, especially for amorphous rubbers such as styrene-butadiene rubber (SBR). In this study, the wear and crack growth rates were correlated using two separate experiments for carbon black and silica-reinforced selected rubber compounds. The wear rate was determined using a blade-type abrasion tester, where the frictional energy input during wearing was measured. The crack propagation rate was determined under different tearing energy inputs using a home-made fatigue tester, with a pure-shear test specimen containing pre-cracks. The rates of abrasion and crack propagation were plotted on a log-log scale as a function of frictional and tearing energies, respectively. Reasonable agreement was observed, indicating that the major mechanism of the abrasion pattern involved repeated crack propagation.