• Title/Summary/Keyword: Rubber Materials

Search Result 1,020, Processing Time 0.029 seconds

A Study of the Formative Characteristics of Future Materials in Fashion Industry

  • Lee, Young-Jae;Kim, Hee-Ra
    • International Journal of Costume and Fashion
    • /
    • v.6 no.2
    • /
    • pp.62-71
    • /
    • 2006
  • These days there are plenty of studies that predict a future with rapid technological development. The development of new technology also has greatly changed the fashion industry. Materials were developed with a variety of techniques, and recently as the exterior and property of materials have been brought into focus, regarding images as a trend of fashion. The purpose of this study is to consider the kinds and characteristics of diverse future materials developed by high technological advancement and to present a new course for future materials by analyzing the formative characteristics of future fashion with future materials. The methods of this work are an examination by reference to theoretical study about the conceptions of futurism in fashion and a visual analysis of the materials in picture data. Another topic of study was the positive source of future fashion that actually applies to these materials. The study makes an analysis of future characteristics expressed in modern fashion, looking at the background and developmental course of futurism. It considers the conception, types and characteristics of diverse new flexible materials such as metal, non-woven fabric, Styrofoam, rubber, glass fiber and polished fiber. With all of these works, we would like to express the course for the development of coming future fashion and the potential of an appropriate union between sensitivity and science.

Present and Future of Thermoplastic Elastomers As Environmentally Friendly Organic Materials (친환경 유기 소재로서 열가소성 탄성체의 오늘과 내일)

  • Choi, Eun-Ji;Yoon, Ji-Hwan;Jo, Jung-Kyu;Shim, Sang-Eun;Yun, Ju-Ho;Kim, Il
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.170-187
    • /
    • 2010
  • Much interest on the thermoplastic elastomers (TPEs) has recently been attracted in commercial fields as well as scientific and applied researches. The TPEs have their own characteristic area especially in relation with block copolymers as well as many other polymeric materials, since they show interesting features displayed by the conventional vulcanized rubber, and at the same time, by the thermoplastics. In addition, they are characterized by a set of interesting properties inherent to block and graft copolymers, variety of blends and vulcanized materials. The importance of TPE as organic materials can be evaluated by the number of published reports (papers, patents, technical reports, etc). The input of the concept 'thermoplastic elastomer' to SciFinderScholar yields 18,508 results between 1939 and July 10, 2010, and the number increased exponentially after the mid of 1990. For the suitable introduction of the TPE, historic, scientific, technical and commercial considerations should be taken into account. This review article starts with a brief discussion on historical considerations, followed by a introduction of the main preparations and analytical techniques utilized in chemical, structural, and morphological studies. The properties, processing tools, the position among organic materials, and applications of TPEs are also briefly reviewed. Finally, the most probable trends of their future development are discussed in a short final remarks.

Characteristics of VOCs and Formaldehyde Emitted from Floorings (바닥재로부터 방출되는 휘발성유기화합물과 폼알데하이드 특성)

  • Park, Hyun-Ju;Jang, Seong-Ki;Seo, Soo-Yun;Lim, Jun-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • Since the seventies and the oil crisis, energy-saving measures have led to a reduction in the ventilation of room. The use of synthetic materials which emit various chemical substances had led to an increase in the concentration of indoor pollutants. "Sick building syndrome (SBS)" and "Sick house syndrome (SHS)" are worldwide problems. Also, the number of complaints about indoor air pollution caused by VOCs (Volatile organic compound) and HCHO (Formaldehyde) has increased. It is important that evaluating and understanding emission of indoor air pollutant from building materials. The object of this study was to evaluate emission test method for flooring such as wood based flooring, carpet tile, rubber tile, PVC sheet and tile, and to determine emission of TVOC and form-aldehyde. The quantity of TVOC and carbonyl compounds emission were sampled and measured by Tenax TA and gas chromatography/mass spectrometry (GC/MSD), 2,4-DNPH cartrige with ozone scrubber and high performance liquid from flooring. The TVOC concentration emitted from carpet tile was ($7.419\;mg/m^2 h$) the highest among 5 groups of test materials. In wood based flooring and PVC tile, the emitted concentration of toluene was high. And the dodecane emission was highest in carpet. The concentration of TVOC decreased by an increase in emission test period. After 7 days, the concentration of TVOC from floorings were about 50% below of the concentration at the first day. TVOC emission from wood based flooring, carpet tile, rubber tile, PVC sheet and tile were decreased in 28 days and remained steady after about 15 days. The concentration of formaldehyde emission from floorings showed extremely low.

A STUDY ON THE BIOMECHANICAL PROPERTIES OF ORTHODONTIC RUBBER ELASTIC MATERIALS (교정용 고무탄성재료의 생역학적 성질에 관한 연구)

  • Song, Hyun-Sup;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.21 no.3
    • /
    • pp.563-580
    • /
    • 1991
  • The purpose of this study was to investigate and compare the biomechanical properties of orthodontic rubber elastic materials. Latex bands, nylon-covered elastic threads and polyurethane-based elastic modules, delivering $205{\pm}10$ grams force at 30mm stretching state were selected and stored separately in 3 environments-air ($22{\pm}3^{\circ}C$), distilled water ($37{\pm}1^{\circ}C$), or natural saliva ($37{\pm}1^{\circ}C$). And, the amount of remaining force and permanent elongation of each sample were measured on Instron at interval of 1 hour, 6 hours, 12 hours, 24 hours, 1 week, and 2 weeks. So the data derived were analyzed statistically. The results were as follows: 1. Force decay and permanent elongation of all materials increased with time lapsed; elastic module, latex band and nylon-covered elastic thread in that order of the amount of force decay; elastic module, elastic thread, latex band in that order of the amount of permanent elongation. 2. Among environmental conditions, force decay and permanent elongation in natural saliva, most increased, and those in air, least increased. 3. There was a negative correlation between force decay and permanent elongation. 4. Force decay and permanent elongation were most affected by the material itself, time and environments in that order. 5. After 24 hours in saliva, the percentage of remaining force in elastic module was 51.9% (107.37grams); in latex band, 83.2%(172.62grams); in elastic thread, 85.0%(179.25grams). After 2 weeks in saliva, the percentage of remaining force in elastic module was 42.9%(88.75grams); in latex band, 74.5%(154.50grams); in elastic thread, 77.6%(163.75grams).

  • PDF

Enhanced Adhesion of Tire Cords via Plasma Polymerizations (플라즈마 중합에 의한 타이어 코드의 접착성 향상연구)

  • Kim, R.K.;Sohn, B.Y.;Han, M.H.;Kang, H.M.;Yoon, T.H.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.128-134
    • /
    • 1999
  • Steel tire cords were coated via RF plasma polymerization of acetylene and butadiene gas in order to enhance adhesion to rubber compounds. Adhesion of tire cords was measured by TCAT and T-test as a function of type of gas, plasma powder, treatment time, gas pressure and Ar gas etching. Some samples were subjected to aging study in distilled water at $80^{\circ}C$ for a period of 7 days. After testing, tire cords were analysed by SEM to elucidate the adhesion mechanism. The highest adhesion values were obtained at 20W, 2min and 25mtorr for acetylene plasma polymerization, and l0W, 4min, 25mtorr for butadiene plasma polymerization. However, Ar plasma etching did not affect adhesion, while the adhesion of tire cords increased rather than decreased, contrary to expectations. It was not possible to elucidate failure mode by SEM, owing to the rough surface of the tire and the thin plasma polymer coating layer.

  • PDF

Development of self-sealing waterproof materials using GRT powder (폐타이어 분말을 이용한 자체보수성 방수재 개발)

  • Lee Dong-Min;Choi Joong-So
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.22-33
    • /
    • 2005
  • Four sheet-shaped and one soft-shaped self-sealing waterproof materials were prepared to recycle some GRT(Ground Rubber Tires). Their physical properties were tested to consider characteristics of them. The self-sealing waterproof materials were consisted of GRT/super absorbent polymer(SAP)/binder and mold by a hot press after mixing with a batch-typed internal mixer. The average size of GRT particles was -40 mesh, SAPs were commercial GE-500F and poly(AM-SAS-AA) prepared in this work. Binders were PU. EVA, LDPE, SBR, and poly(2-EHA). And PU film was attached to improve the properties of waterproof materials. Characteristics of self-sealing waterproof materials consisted of by GRT/GE-500F/EV-600/PU film and GRT/GE-500F/SBR(vulcanization)/PU film among the developed self-sealing waterproof materials were similar to the commercial products. And properties of the soft-shaped self-sealing waterproof materials consisted of by GRT/GE-500F/Po1y(2-EHA) and CRT/Poly(AM-SAS-AA)/poly(2-EHA) were improved within from four times to twenty times compared to the one oi the commercial products.

Preparation and Photoluminescence Characteristics of Liquid Silicone Rubber Containing Cadmium Selenide Nanoparticles (Cadmium Selenide Nanoparticles을 함유하는 액상실리콘 고무의 제조와 형광특성)

  • Kang Doo-Whan;Lee Byoung-Chul;Kim Ji-Young
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.266-270
    • /
    • 2006
  • Poly [(dimethylmethylyinyl) siloxane] phosphineoxide (PMViSPO) was prepared by adding phosphorus oxychloride $(POCl_3)$ to poly (dimethylmethylyinyl) siloxane (PMViS) at $0^{\circ}C$ under nitrogen atmosphere. Cadmium selenide (CdSe) was prepared by reacting cadmium oxide (CdO), tetradecyl-phosphonic acid (TDPA), trioctylphosphine oxide (TOPO) at $300^{\circ}C$, and adding solution of dissolved Se to tributylphosphine (TBP) and trioctylphosphine (TOP) CdSe-poly [(dimethylmethylvinyl) siloxane] phosphine-oxide (CdSe-SPO) adduct was synthesised by adding PMViSPO to CdSe solution. Liquid silicone rubber composite (LSRC-1) was prepared by compounding $\alpha,\omega-vinyl$ poly (dimethylsiloxane) (VPMS), $\alpha,\omega-hydrogen$) poly(dimethylsiloxane) (HPMS), and CdSe under Pt catalyst, and also LSRC-2 was prepared from VPMS, HPMS, and CdSe-SPO using Pt catalyst. It was confirmed that CdSe nanoparticles with photoluminescence characteristics was dispersed uniformly in LSR matrix. The diameter of CdSe was $30\sim50nm$. By measuring the number of CdSe nanoparticles, 202 particles of CdSe in LSRC-2 and 165 particles of CdSe in LSRC-1 were dispersed in the same area of LSR matrix. Thermal stability for LSRC-2 compounded with CdSe-SPO was better than LSRC-1.

Measurement of Complex Modulus of Acoustic Materials by Using Transfer Function Method

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Joo;Kim, Bong-Ki;Kim, Sang-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1E
    • /
    • pp.12-17
    • /
    • 2002
  • Two improvements are discussed in measurement of the complex Young's modulus of the acoustic materials by using the transfer function method. It is found that the accelerometer misalignment might result in the severe measurement error, particularly in high frequency range. The supporting structure is modified to attach the upper and lower accelerometers along the vertical axis. Secondly, the method fur solving the equation associated with wave model is described. The solution of the lumped mass-spring model is chosen as the starting value for low frequency range, while in the mid and high frequency, the solution to the previous frequency step is used as the initial values. Measurements are done for hard and soft rubber specimens. It is shown that the erroneous peaks in the transfer function, due to the measurement error, cause highly incorrect Young's modulus and loss factors.

Analyzing the Effect of Insole Materials on Vibration and Noise Reduction between Floors (층간소음 방지를 위한 인솔 재질별 진동 및 소음 평가)

  • Seungnam Min;Heeran Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.110-122
    • /
    • 2023
  • The COVID-19 pandemic increased people's time at home and caused an 80% increase in noise disputes between floors. The purpose of this study is to propose suitable materials for making indoor shoes (insoles) to minimize noise between floors. Subjects without back pain and leg-related disease (e.g. arthritis, etc.) from three different age groups (childhood, adolescence, and adulthood) were recruited for the study. Five polymer insole materials were considered: Chloroprene Rubber (CR foam), Ethylene Propylene Diene Monomer (EPDM foam), Natural Latex foam, Ethylene Vinyl Acetate (EVA foam), and Polyurethane (PU foam). From these materials, 20 combinations were prepared and randomly tested for noise and vibration. The results revealed a significant difference in noise and vibration levels based on the type of material used and the age of the subject. Nevertheless, all materials under consideration successfully reduced noise and vibration; in particular, type A-C greatly decreased. The CR foam material was especially effective at noise and vibration reduction (p<.01). This study suggests that adding insoles into socks that children wear at home could reduce noise vibration and disputes between floors.

Recent Development in Polyurethanes for Automotives

  • Moon, Junho;Kwak, Sung Bok;Lee, Jae Yong;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.249-256
    • /
    • 2017
  • The history of polyurethane is relatively shorter compared to that of the other polymers, though its importance has grown rapidly. Due to its unique properties, polyurethanes are widely applied in various fields. In particular, the automotive industry is one of the important application fields. To date, polyols and isocyanates used in the polyurethane industry are generally of petrochemical origin. Recently, owing to the oil crisis, legislation, and growing awareness towards environmental preservation, the demand for more sustainable and eco-friendly raw materials has increased. In this paper, the latest research and development trends in polyurethane applications were reviewed, with a focus on the automobile industry in areas such as seat comfort, noise reduction, light weight, biomass-based polyurethane, and recycling.