• 제목/요약/키워드: Rubber Isostatic Pressing

검색결과 12건 처리시간 0.024초

금속 분말의 고무 등가압 성형과 냉간 정수압 성형 (Rubber Isostatic Pressing and Cold Isostatic Pressing of Metal Powder)

  • 김종광;양훈철;김기태
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1076-1086
    • /
    • 2003
  • The effect of a rubber mould on densification behavior of aluminum alloy powder was investigated under cold isostatic compaction. A thickness of rubber mould and friction effect between die wall and rubber mould were also studied. The hyperelastic constitutive equation based on the Ogden strain energy potential was employed to analyze deformation of rubber. The elastoplastic constitutive equation of Shima and Oyane and that of Lee on densification were implemented into a finite element program (ABAQUS) to simulate densification of metal powder for cold isostatic pressing and rubber isostatic pressing. Finite element results were compared with experimental data for densification and deformation of aluminum alloy powder under isostatic compaction.

온간 성형 하에서 A1 합금 분말의 정밀정형에 대한 유한요소해석 (A Finite Element Analysis for Near-net-shape Forming of A16061 Powder under Warm Pressing)

  • 김종광;양훈철;김기태
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1897-1906
    • /
    • 2003
  • A finite element analysis for near-net-shape forming of A16061 powder was performed under warm rubber isostatic pressing and warm die pressing. The advantages of warm compaction by rubber isostatic pressing were discussed to obtain a part with better density distributions. The shape of rubber mold was designed by determining a cavity shape that provides a desired shape of the final powder compact. To simulate densification and deformed shape of a powder compact during pressing, the elastoplastic constitutive equation based on yield function of Shima-Oyane was implemented into a finite element program(ABAQUS). The hyperelastic constitutive equation based on the Ogden strain energy Potential was employed to analyze nonlinear elastic response of rubber. Finite element results were compared with experimental data for Al6061 powder compacts under warm die pressing and warm isostatic pressing.

고무 몰드를 이용한 금속 분말의 온간 등가압 성형 (Warm Isostatic Pressing of Metal Powder by a Rubber Mould)

  • 양훈철;이지완;김기태
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1831-1841
    • /
    • 2002
  • The effect of a rubber mould on densification and deformation of aluminum alloy powder was investigated during warm isostatic pressing. The hyperelastic constitutive equations based on various strain energy potentials were employed to analyze deformation of rubber. The parameters in the strain energy potentials were obtained from experimental data for uniaxial and volumetric compression of Viton rubber at two warm temperatures. For elastoplastic response, the yield function of Shima and Oyane was implemented into a finite element program (ABAQUS) to predict compaction responses of metal powder during warm isostatic pressing. Finite element results were compared with experimental data for densification and deformation of aluminum alloy powder with/without a rubber mould under warm die pressing.

냉간정수압 하에서 금속분말의 치밀화에 미치는 고무몰드의 영향 (Effect of rubber mold on densification behavior of metal powder during cold isostatic pressing)

  • 정진원;김기태
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.330-342
    • /
    • 1998
  • The effect of rubber mold on densification behavior of pure iron powder was investigated under cold isostatic pressing. The thickness effect of rubber mold was also studied. The elastoplastic constitutive equation based on the yield function of Shima and Oyane was implemented into the finite element program(ABAQUS) to predict compaction responses of metal powder under cold isostatic pressing. The hyperelastic constitutive equation based on Moony-Rivlin and Ogden strain energy potentials was also employed to analyze deformation of rubber mold. The coefficients of the strain energy potentials were obtained from tension and volumetric compression data of rubber. Finite element results were compared with experimental data for densification of pure iron powder under cold isostatic pressing.

온간 성형 하에서 Al 합금 분말의 정밀정형에 대한 유한요소해석 (A Finite Element Analysis for Near-net-shape Forming of Al6061 Powder under Warm Pressing)

  • 김기태;양훈철;김종광
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.507-512
    • /
    • 2003
  • A finite element analysis for near-net-shape forming of Al6061 powder was performed under warm pressing. The advantages of warm compaction by rubber isostatic pressing were discussed to obtain parts with better density distributions. To simulate densification and deformed shape of a powder compact during warm pressing, the elastoplastic constitutive equation based on yield function of Shima-Oyane was implemented into a finite element program(ABAQUS). The hyperelastic constitutive equation based on the Ogden strain energy potential was employed to analyze nonlinear elastic response of rubber. Finite element results were compared with experimental data for Al6061 powder compacts under warm pressing.

  • PDF

태양전지급 폴리실리콘 성형체 제작을 위한 CIP법의 활용 (Application of cold isostatic pressing method for fabrication of SoG-Si powder compacts)

  • 이호문;신제식;문병문;권기환;김기영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.126-129
    • /
    • 2009
  • In this study, it was aimed to develop the re-use technology of ultra-fine silicon powders, by-products during the current production process of high purity poly-Si feedstock. For this goal, the compacts of the silicon powders were tried to fabricate by CIP (Cold Isostatic Pressing) method using silicon rubber mold without chemical binder materials. The density ratio of the silicon powder compacts reached 74%. In order to simulate the actual handling and charging conditions of feedstock material in casting process, a shaking test was carried out and mass loss measured. Finally, the silicon powder compacts were melted using a cold crucible induction melting method and the purity assessment was conducted by Hall effect measurement.

  • PDF

응집영역모델을 이용한 정수압 성형 해석시 고무몰드의 변형거동 (Deformation of the Rubber Mold by Using the Cohesive Zone Model Under Cold Isostatic Pressing)

  • 이성철;김기태
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.387-395
    • /
    • 2008
  • Stress distribution and interfacial debonding process at the interface between a rubber mold and a powder compact were analyzed during unloading under cold isostatic pressing. The Cap model proposed by Lee and Kim was used for densification behavior of powder based on the parameters involved in the yield function of general Cap model and volumetric strain evolution. Cohesive elements incorporating a bilinear cohesive zone model were also used to simulate interfacial debonding process. The Cap model and the cohesive zone model were implemented into a finite element program (ABAQUS). Densification behavior of powder was investigated under various interface conditions between a rubber mold and a powder compact during loading. The residual tensile stress at the interface was investigated for rubber molds with various elastic moduli under perfect bonding condition. The variations of the elastic energy density of a rubber mold and the maximum principal stress of a powder compact were calculated for several interfacial strengths at the interface during unloading.

Crystal growth and pinning enhancement of directionally melt-textured$(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y$ oxides in air

  • Kim So-Jung
    • 한국결정성장학회지
    • /
    • 제15권5호
    • /
    • pp.188-192
    • /
    • 2005
  • High $T_c(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y[(YNS)-123]$ superconductors with/without $CeO_2$ additive were systematically investigated by the zone melt growth process in air. Cylindrical green rods of (YNS)-123 oxides were fabricated by cold isostatic pressing (CIP) method using rubber mould. A sample prepared by this method showed well-textured microstructure, and $(Y_{0.5}Nd_{0.25}Sm_{0.25})_2BaCuO_5[(YNS)211]$ nonsuperconducting inclusions were uniformly dispersed in large $(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y$[(YNS)123] superconducting matrix. In this study, optimum melting temperature and growth rate were $1100^{\circ}C$ and 3 mm/hr, respectively. The directionally melt-textured (YNS)-123 sample with $CeO_2$ additive showed an onset critical temperature $(T_c)\;T_c{\geq}93K$ and sharp superconducting transition.

국부용융성장법으로 제조한 (Sm/Y)-Ba-Cu-0계 고온복합초전도체의 CeO2첨가에 따른 초전도특성 (Superconducting Properties of (Sm/Y)-Ba-Cu-0 High Tc Composite Superconductors with CeO2 Additive by Zone-Melt Textured Growth)

  • 김소정
    • 한국전기전자재료학회논문지
    • /
    • 제15권3호
    • /
    • pp.269-274
    • /
    • 2002
  • (Sm/Y)-Ba-Cu-O system high Tc composite superconductors with/without $CeO_2$ additive were directionally grown by zone-melting process, haying large temperature gradient, In air atmosphere. Cylindrical green rods of $({Sm/y})_{1.8}Ba_{2.4}Cu_{3.4}O_x$ [(Sm/Y)1.8] composite oxides by cold isostatic pressing(CIP) method using rubber mold were fabricated. The microstructure and superconducting properties were investigated by XRD, SEM, TEM and SQUID magnetometer. The size of nonsuperconducting $({Sm/y})_2BaCuO_5$ inclusions of the melt-textured (Sm/Y)1.8 sample with CeO$_2$ additive were remarkably reduced and uniformly distributed within the superconducting (Sm/Y)1.8 matrix. Both samples, with/without $CeO_2$ additive, showed an onset Tc $\geq$ 90 K and sharp superconducting transition. The critical current density Jc value of the $CeO_2$ addictive were $1{\times}10^5A/\textrm{cm}^2$ in 77 K, 0 Tesla.

존멜팅법으로 제조한 (YNdSm)-Ba-Cu-O계 고온복합초전도체의 미세구조 및 전기적 특성 (Microstructure and Electrical Properties of (YNdSm)-Ba-Cu-O High Tc Composite Superconductors by Zone Melting Process)

  • 김소정;이상헌
    • 한국전기전자재료학회논문지
    • /
    • 제29권2호
    • /
    • pp.110-113
    • /
    • 2016
  • (YNdSm)-Ba-Cu-O system high Tc composite superconductors were directionally grown by zone melting process, having large temperature gradient, in air atmosphere. Cylindrical green rods of $(YNdSm)_{1.8}Ba_{2.4}Cu_{3.4}O_x$ [(YNS)1.8]composite oxides by CIP (cold isostatic pressing) method using rubber mold were fabricated. The microstructure and superconducting properties were investigated by XRD, TEM and SQUID magnetometer. The size of nonsuperconducting $(YNdSm)_2BaCuO_5$ inclusions of the melt-textured (YNS)1.8 sample with $CeO_2$ additive were remarkably reduced and uniformly distributed within the superconducting (YNS)1.8 matrix. (YNS)1.8 samples, with / without $CeO_2$ additive, showed an onset $T_c{\geq}90K$ and sharp superconducting transition. The critical current density $J_c$ value of the (YNdSm)1.8 superconductor with $CeO_2$ additive were 840 A, $1.2{\times}104A/cm^2$ in 77 K, 0 Tesla by direct current transport method.