• Title/Summary/Keyword: Rubber Filler

Search Result 212, Processing Time 0.019 seconds

Study on Property Change with a Fire Retardant Content in the Manufacture of Polymer Composites for Cable Sheath

  • Li, Xiang Xu;Lee, Sang Bong;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.118-122
    • /
    • 2019
  • Four different polymer compounds were manufactured to make cable sheaths for the shipping industry. Two kinds of ethylene vinyl acetate (EVA) as the main matrix polymers and EVA-grafted maleic anhydride (EVA-g-MAH) as the coupling agent were selected for compounding with fire retardant, crosslinking agent, filler, plasticizer, and other additives. The properties of the four compounded materials were investigated with different contents of the fire retardant, silanecoated magnesium dihydroxide (S-MDH). In the rheology evaluation, the $t_{60}$ and ${\Delta}T$ values increased with increasing S-MDH contents. On the other hand, the tensile strength decreased with increasing S-MDH content due to a relative decrease in binder polymers. With increasing S-MDH content, fire resistance increased, but cold resistance showed no obvious enhancement due to the polar effect of vinyl acetate in EVA.

A Concise Review of High Performance PPS Composites using Various Fillers

  • Ahn, Seonghyeon;Park, Chanil;Choi, Jae-Hak;Kim, Yong Seok;Yoo, Youngjae
    • Elastomers and Composites
    • /
    • v.57 no.3
    • /
    • pp.81-91
    • /
    • 2022
  • Composites based on engineering thermoplastics exhibit excellent mechanical and thermal properties and simple processing and reprocessing attributes, and are widely used in the aerospace, three-dimensional (3D) printing, and automobile industries. Polyphenylene sulfide (PPS) is one of the most desirable engineering thermoplastics, owing to its superior thermal performance, inherent flame retardancy resulting from the presence of sulfur in its backbone structure, chemical resistance, and satisfactory electrical properties. However, pure PPS resin has limited applicability owing to its brittleness. To compensate for these shortcomings, various filler materials are frequently used in the manufacture of PPS composites. In this review, we would like to present the correlation between the structure and physical properties of PPS composite materials using various fillers.

Life Cycle Assessment(LCA) of Rubber Recycling Process in Waste Tire (폐타이어 고무 재활용 공정의 전과정평가 연구)

  • Ahn, Joong Woo;Kim, Jin Kuk
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.74-83
    • /
    • 2018
  • This study conducted the Life Cycle Assessment(LCA) on waste rubber recycling technology for recovering rubber product from the waste tires. Environmental impacts were assessed for the five categories of impacts: global warming, resource depletion, acidification, eutrophication, photochemical oxide production, and ozone layer depletion. When recycling 1ton of waste tire containing rubber, global warming impact was 1.77E+02 kg $CO_2-eq.$, resource depletion impact was 1.23E+00 kg Sb-eq., acidification impact was 5.92E-01 kg $SO_2-eq.$, eutrophication impact was 1.23E-01 kg $PO{_4}^{3-}-eq.$, photochemical oxide production impact was 3.42E-01 kg $C_2H_4-eq.$, and ozone layer depletion impact was 1.87E-04 kg CFC11-eq. In terms of overall environmental impacts, carbon, softener and electricity the greatest impact, so it is necessary to compare the environmental impacts of the raw materials to replace carbon and softener, and a method to reduce the filler usage in the process is needed. In addition, it is necessary to improve energy efficiency, change to low-energy sources, and apply renewable energy.

Application of Various Types of Surfactants for Improving Hydrophilic Properties of Polyvinylsiloxane Dental Rubber Impression Materials and its Effects on Physical Properties (폴리비닐실록산 치과용 고무인상재의 친수성 향상을 위한 계면활성제의 응용과 물성에 미치 는 영향)

  • Park, Yeong-Joon;Hwang, Moon-Jin;Kim, Min-Kang;Song, Ho-Jun;Ha, Kwang;Kang, Shin-Young
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.88-103
    • /
    • 2008
  • This study was purposed to investigate the effects of surfactants and fillers on physical properties of hydrophilic polyvinylsiloxane dental impression materials (PVS). Incorporation of surfactants enhanced the hydrophilicity of the PVS, however, it induced increased viscosity and permanent deformation ratio, delayed setting, and decreased tensile strength. At high concentrations of surfactant, the tensile strength was observed to decrease significantly due to the internal pore formation. Especially, the hydrophilicity of the PVS was significantly enhanced with the addition of Silwet L-77. However, the viscosity, strain in compression, pore formation, and setting time increased whereas the elastic recovery rate and strength remarkably decreased. The PVS dental materials containing Span 20 showed the lowest degree of viscosity increase, delayed setting, pore formation, and hydrophilicity. The delayed setting, pore formation, and strength decrease caused by the incorporation of surfactant were improved by substituting the crystalline quartz filler with diatomaceous earth while the contact angle of PVS dental materials increased.

Effect of organoclay on the dynamic properties of SBR compound reinforced with carbon black and silica (유기화 클레이의 첨가가 실리카 및 카본블랙를 함유한 SBR 복합체의 동적 특성에 미치는 영향)

  • Son, M.J.;Kim, W.
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.260-267
    • /
    • 2006
  • SBR (styrene-butadiene rubber; 25 wt% of solid contents) nanocomposites reinforced with OLS(organically modified layered silicates) were manufactured via the latex method. Two types of OLS are prepared, i.e. dodecylamine (primary amine) modified montmorillonite (DA-MMT) and N, N-dimethyldodecylamine (tertiary amino) modified MMT (DDA-MMT). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to characterize the layer distance of OLS and the morphology of the nanocomposites. SBR nanocomposites reinforced with ternary phase filler (carbon black/silica/OLS) systems also manufactured. Dynamic mechanical thermal analysis (DMTA) was performed on these composites to determine the loss factor (tan $\delta$) over a range of temperature($-20^{\circ}C{\sim}80^{\circ}C$). The results showed that there was significant changes on the values or tan $\delta$ with the addition of small amount of the OLS. By increasing the contents of OLS, the values of tan $\delta$ at $0^{\circ}C$ increased but those of tan $\delta$ at $60^{\circ}C$ decreased with increasing OLS contents.

Study on the Properties of UV Curing Thermal Conductive and Pressure Sensitive Adhesive Using Inorganic Fillers

  • Oh, Ji-Hwan;Choi, Jin-Yeong;Kim, Su-Hwan;Jang, Se-Hoon;Shin, Yoo-Jin;Kim, Dae-Hyun;Yoo, Hwan-Kyu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.22-26
    • /
    • 2017
  • The thermal conductivity and the adhesive properties were measured, after synthesis of thermal conductive composite which was obtained as a result of mixing alumina or graphite with acrylic adhesive synthesized by UV polymerization. The adhesive properties of the composite were evaluated measuring the peel strength at 180 degrees, the retention, and the initial tack;the thermal conductivity was estimated using laser flash analysis. As the filler contents increased, a decrease in peel strength and initial tack and an increase in retention and thermal conductivity were observed. When compared to alumina, the adhesion of graphite showed a dramatic decrease, whereas the thermal conductivity was further enhanced. It was found out that the small size of graphite increased the mechanical interlocking between the polymer and the filler, and it was easier for graphite to come into contact with other graphite in the matrix.

Asphalt Sealant Containing the Waste Edible Oil (폐식용유를 이용한 아스팔트 실란트)

  • Kim, Seong-Jun
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.61-70
    • /
    • 2004
  • This work is about the development or asphalt sealant using the waste edible oil. Asphalt sealant has been used for crack filler and bridge deck joint sealer Several plasticizers such as aromatic or paraffin process oils, DOP, Bunker C fuel oil, and waste edible oil were compounded with the basic components such as asphalt(AP-5), a thermoplastic elastomer(SBS triblock copolymer), a tackifying agent(petroleum resin), and stabilizers. Penetration, softening point, ductility, and elongation by tensile adhesion of those asphalt sealant compounds were measured. Their properties were changed largely depending on both the type and content of plasticizers. Waste edible oil and DOP were the best plasticizers for the low temperature tensile adhesion characteristics. Penetration and elongation by tensile adhesion of asphalt sealant compounds increased with the increase of waste edible oil content and decreased with the increase of talc content. The manufacture of asphalt sealant with low penetration and excellent low temperature tensile adhesion was possible by the recipe optimization.

The Effects of Cure System on Vulcanization Reaction Constant and Physical Properties of Rubber Compounds (가황시스템 변화가 배합고무의 가황반응속도 및 물리적 특성에 미치는 영향)

  • Lee, Seag;Park, Nam Cook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.419-426
    • /
    • 1999
  • In this study, the reaction rate constant, activation energy, total crosslinking density, elastic constant, cure properties ($t_5,\;t_{90}$), modulus, and abrasion resistance of rubber compounds were investigated as a function of cure temperatures, cure systems and reinforcing filler loadings. Reaction rate constants showed strong dependence on thc carbon black loading, cure temperature and cure system, and increased sharply with increasing the reaction temperatures. The lowest activation energy was obtained in the efficient cure (EC) system which corresponds to the high level of sulfur to accelerator ratio, and the activation energy was decreased with decreasing the carbon black loadings. The change of carbon black loadings directly affects the modulus and abrasion resistance, but the change of cure system showed various effects on the rubber compounds. Increased carbon black loadings showed the high modulus, improved abrasion resistance and short scorch time but decrease in crosslinking density and elastic constant. Higher crosslinking density and elastic constant were shown in the EC cure system regardless of carbon black loadings, but scorch timc ($t_5$) was not affected by the change of the ratio of sulfur to accelerator. Rapid optimum cure time ($t_{90}$) were showen in the EC cure system. Also, the equivalent cure curve coefficient of rubber compound was 0.96 for conventional cure (CC) system, and 0.94 for semi-efficient cure (SEC) and EC system regardless carbon black loadings. As regarding the abrasion resistance, wear volume showed the logarithmic increase for the loaded weight.

  • PDF

Recycle of Unburned Carbon and Microceramics as Alternatives to Rubber Weight-Adding Materials and Polypropylene Filling Agents (고무증량재 및 플라스틱 충진재의 대체재로 UC와 CM의 재활용)

  • Han, Gwang Su;Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2021
  • Unburned carbon (UC) was successfully separated from fly ash by up to 85.8% in weight via froth flotation using soybean oil as a collector. An 18 wt% yield of microceramics (CM) could be achieved by employing a hydro cyclone separator located immediately after the flotation equipment. UC and CM were tested as alternatives to weight-adding material and polymer (especially polypropylene in this study) filler, respectively. Large particles of UC were broken down into smaller ones via ball milling to have an average particle diameter of 10.2 ㎛. When crushed UC was used as an alternative to clay as a rubber weight-adding material, a somewhat lower tensile strength and elongation rate than the allowed values were unfortunately obtained. In order to satisfy the standard limits, further treatment of UC is required to enhance surface energy for more intimate bonding with rubber. CM was observed in spherical forms with an average diameter of 5 ㎛. The surface of the CM particles was modified with phenol, polyol, stearic acid, and oleic acid so that the surface modified CM could be used as a polypropylene-filling agent. The flowability was good, but due to the lack of coupling forces with polypropylene, successful impact strength and flexural strength could not be obtained. However, when mixing the surface-modified CM with 1% silane by weight, a drastic increase in both the impact strength and flexural strength were obtained.

Filler-Elastomer Interactions. 1. Roles of Modified Carbon Black Surfaces to Enhance Mechanical Properties of Carbon Black/Rubber Vulcanizates (충전재-탄성체 상호작용. 1. 표면처리된 카본블랙이 카본블랙/고무 복합재료의 기계적 물성에 미치는 영향)

  • Kim, Jeong-Soon;Nah, Chang-Woon;Park, Soo-Jin
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.98-105
    • /
    • 2000
  • Using FT-IR and contact angle measurements it is observed that the chemical surface treatments on virgin carbon blacks lead to a change of the surface properties, including surface functionality and surface free energy It is found that the developments of surface functional groups on acidically and basically treated (ACB and BCB in this study, respectively) carbon blacks are largely correlated with the specific component of surface free energy of the carbon blacks. However, a significant advantage of compounding composites is gained by BCB or NCB (nonpolar chemical treatment) specimens, resulting in improving the hardness, elongation at break, and tensile strength. Particularly, it is seen that the tensile strength of the composites are greatly depended on the London dispersive component of surface free energy determined from the contact angle measurements. It is then concluded that the London dispersion component of carbon blacks plays an important role in an organic rubbers-based compounding composite system.

  • PDF