• 제목/요약/키워드: Rubber Compound

검색결과 221건 처리시간 0.021초

Non-destructive Evaluation Method for Service Lifetime of Chloroprene Rubber Compound Using Hardness

  • Park, Kwang-Hwa;Lee, Chan-Gu;Park, Joon-Hyung;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • 제56권3호
    • /
    • pp.124-135
    • /
    • 2021
  • Evaluating service lives of rubber materials at certain temperatures requires a destructive method (typically using elongation at break). In this study, a non-destructive method based on hardness change rate was proposed for evaluating the service life of chloroprene rubber (CR). Compared to the destructive method, this non-destructive method ensures homogeneity of CR specimens and requires a small number of samples. Thermal accelerated degradation test was conducted on the CR specimens at 55, 70, 85, 100, and 125℃, and the tensile strength, elongation at break, and hardness were measured. The results of the experiment were compared to those of the accelerated life evaluation method proposed in this study. Comparing the analyzed lives in the high temperature region (70, 85, 100, and 125℃), the difference between the service lives for the destructive method (using the elongation at break) and non-destructive method (using the hardness) was approximately 0.1 year. Therefore, it was confirmed that the proposed non-destructive evaluation method based on hardness changes can evaluate the actual life of CR under thermally accelerated degradation conditions.

수종의 화학소독제에 침적시킨 고무인상체의 크기안정성에 관한 연구 (A STUDY ON DIMENSIONAL STABILITY OF THE RUBBER IMPRESSION MATERIALS FOLLOWING IMMERSION WITH CHEMICAL DISINFECTANTS)

  • 김형식;김창회
    • 대한치과보철학회지
    • /
    • 제27권2호
    • /
    • pp.249-259
    • /
    • 1989
  • Dental impression materials often become contaminated with patients' saliva and blood which creates the potential for cross-infection. It was the purpose of this study to investigate the effects of disinfection of three different rubber impression materials with four different disinfecting solutions. Polysulfide, vinyl polysiloxane and polyether impression materials were mixed according to the manufacturer's directions and samples were formed on a stainless steel model. On removal from the standard model, impressions were immersed in a disinfectant (acid-potentiated glutaraldehyde, phenollic compound, chlorine compound, iodophor) at room tempera tures for ten minutes. After disinfection, the distance between reference points(linear dimension) was measured using the non-contact automatic cordinate measuring projector(MZ-1, Nikon). Through statistical analyses on the data from this study,. the following conclusions were obtained. 1. Polysulfide, vinyl polysiloxane impressions were disinfected without dimensional change.(p>0.05) 2. Polyether impressions which were immersed in acid-potentiated glutaraldehyde were statistically different from control group.(p<0.05) But the amount of shrinkage(0.04%) would not be clinically significant. 3. By immersion of polysulfide, vinyl polysiloxane, polyether impressions in Banicide, Biocide, Multicide plus, sodium hypochlorite for ten minutes, clinically accurate impressions were obtained without dimensional change.

  • PDF

리튬이온 전지용 가스켓 고무의 특성에 미치는 충전제의 영향 (The Effect of Fillers on Rubber Characteristics for Gasket to Lithium Ion Battery)

  • 서관호;조광수;윤인섭;최우혁;허병기;강동국
    • 폴리머
    • /
    • 제34권5호
    • /
    • pp.430-433
    • /
    • 2010
  • 리튬이온 전지에 사용되는 가스켓 재료는 내전해액성, 전기절연성, 압축 영구 줄음률, 비오염성, 저온성이 요구된다. 가스켓 고무에 적용되는 충전제의 특성을 살펴보기 위하여 EPDM(ethylene propylene diene monomer), NBR(nitrile butadiene), FKM(fluoro elastomers)에 카본블랙 및 실리카계 충전제의 함량을 조정하여 compoud를 만들었다. 이렇게 배합된 compound를 리튬이온 전지의 작동 환경을 고려하여 전해액에 대한 장기평가 및 압축 영구 줄음률, 저온성에 대한 평가를 실시하였다. 본 실험에서는 카본블랙 및 실리카계 충전제를 사용하여 각 충전제에 따른 고무재료의 물리적 화학적 특성에 대하여 검토하였다.

Effect of Surfactant on the Physical Properties and Crosslink Density of Silica Filled ESBR Compounds and Carbon Black Filled Compounds

  • Hwang, Kiwon;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제53권2호
    • /
    • pp.39-47
    • /
    • 2018
  • Styrene-butadiene rubber (SBR) is widely used in tire treads due to its excellent abrasion resistance, braking performance, and reasonable cost. Depending on the polymerization method, SBR is classified into solution-polymerized SBR (SSBR) and emulsion-polymerized SBR (ESBR). ESBR is less expensive and environmentally friendlier than SSBR because it uses water as a solvent. A higher molecular weight is also easier to obtain in ESBR, which has advantages in mechanical properties and tire performance. In ESBR polymerization, a surfactant is added to create an emulsion system with a hydrophobic monomer in the water phase. However, some amount of surfactant remains in the ESBR during coagulation, making the polymer chains in micelles clump together. As a result, it is well-known that residual surfactant adversely affects the physical properties of silica-filled ESBR compounds. However, researches about the effect of residual surfactant on the physical properties of ESBR are lacking. Therefore, in this study we compared the effects of remaining surfactant in ESBR on the mechanical properties of silica-filled and carbon black-filled compounds. The crosslinking density and filler-rubber interaction are also analyzed by using the Flory-Rehner theory and Kraus equation. In addition, the effects of surfactant on the mechanical properties and crosslinking density are compared with the effects of TDAE oil (a conventional processing aid).

간략화된 점탄성 모델을 적용한 고무 컴파운드의 압출 해석 (Computer Simulation of Die Extrusion for Rubber Compound Using Simplified Viscoelastic Model)

  • 김지현;홍진수;최성현;김학주;류민영
    • Elastomers and Composites
    • /
    • 제46권1호
    • /
    • pp.54-59
    • /
    • 2011
  • 점탄성 흐름의 특성은 압출시 다이 스웰 현상에서 확인 할 수 있다. 본 연구는 이러한 점탄성 특성을 갖는 고무 컴파운드를 모세관 다이에서 비선형 점탄성 모델인 PTT 모델과 간략화된 점탄성 모델을 이용하여 압출현상을 모사하고 다이 스웰을 실험과 비교 하였다. 실험은 Fluidity Tester를 이용하였고 해석은 상용화된 CFD Code인 Polyflow를 이용하였다. 두 모델에 의해 예측된 다이 스웰은 실험과 유사한 결과를 보였다. 그러나 PTT 모델에서는 압력과 속도분포, 레저버의 모서리에서의 와류현상을 예측할 수 있었지만 간략화된 점탄성 모델에서는 예측할 수 없었다. 간략화된 점탄성 모델은 다이 내부의 세밀한 흐름현상을 예측하지는 못하지만 다이 스웰은 잘 예측할 수 있으며 PTT모델보다 해석시간이 매우 짧아서 이의 응용에 큰 장점을 갖고 있다고 판단된다.

Wear Behavior of Silica filled Styrene-Butadiene Rubber: A Comparative Study Between the Blade-Type and Akron-Type Abrader

  • Gi-Bbeum Lee;Dongwon Kim;Seowon Lee;Seonhong Kim;Myung-Su Ahn;Bismark Mensah;Changwoon Nah
    • Elastomers and Composites
    • /
    • 제58권4호
    • /
    • pp.179-190
    • /
    • 2023
  • The effect of the particle size and silica structure on the wear behavior of Silica/Styrene-Butadiene Rubber (SBR) compounds was investigated using a blade-type abrader and the findings were compared with those obtained with an Akron abrader. The compensated characteristic parameter (Ψc), which was the contributory factor of the combined effect of the particle size and filler structure, was introduced. This parameter was found to exhibit a linear relationship with the Young's modulus. The Young's modulus correlated more with Ψc than the uncompensated characteristic parameter (Ψ) modeled for carbon black. The wear rate and volume loss measured using a blade-type abrader and Akron abrader were respectively observed to be inversely proportional to Ψc, that is, the wear resistance of Silica/SBR compound improved as the particle size became smaller and the silica structure became intricate. The coefficient of determination (R2) obtained from the linear relationship between Ψc and wear rate was higher than those between Ψc and volume loss for the Silica/SBR compound. Thus, the blade-type abrader exhibited high potential to be used for accurately evaluating the effect of particle size and structural properties of silica on the wear behavior of SBR compounds.

Influence of Blending Method on the Generation of Wear Particulate Matters and Physical Properties in TBR Tire Tread Compounds

  • Sanghoon Song;Junhwan Jeong;Jin Uk Ha;Daedong Park;Gyeongchan Ryu;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • 제58권4호
    • /
    • pp.161-172
    • /
    • 2023
  • Because particulate matter has emerged as a major contributor to air pollution, the tire industry has conducted studies to reduce particulate matters from tires by improving tire performance. In this study, we compared the conventional blending method, in which rubber, filler, and additives are mixed simultaneously, to the Y-blending method, in which masterbatches are blended. We manufactured carbon black (CB)-filled natural rubber (NR)/butadiene rubber (BR) blend and silica-filled epoxidized NR/BR blend compounds to compare the effects of the two blending methods on the physical properties of the compounds and the amount of particulate matter generated. The Y-blending method provided uniform filler distribution in the heterogeneous rubber matrix, improved processability, and exhibited low rolling resistance. This method also improved physical properties owing to the excellent filler-rubber interaction. The results obtained from measuring the generation of particulate matter indicated that, the Y-blending method reduced PM2.5 particulate matter generation from the CB-filled and silica-filled compounds by 38% and 60%, and that of PM10 by 29% and 67%, respectively. This confirmed the excellence of the Y-blending method regarding the physical properties of truck bus radial tire tread compounds and reduced particulate matter generated.

연료전지 스택 가스켓용 고무재료의 제조와 평가 (Compounding and Test of Gasket Rubber for Fuel Cell Stack Application)

  • 허병기;강동국;김혜영;서관호;박이순
    • Elastomers and Composites
    • /
    • 제42권4호
    • /
    • pp.232-237
    • /
    • 2007
  • 가스켓 재료로서 널리 사용되고 있는 FKM, VMQ, EPDM, NBR을 연료전지 스택용 가스켓으로써의 적합성을 평가하기 위하여, 각각의 재료특성을 이용하여 최적상태의 배합물을 제작하고, 배합물의 특성을 살펴보았다. 최적의 상태를 만족하도록 만든 배합물에서 NBR 재료는 장기 화학적 물성에서, VMQ는 금속이온 용출성에서, EPDM은 가스투과성이 FKM에 비하여 열세로 나타났다. 배합물 물성에서 우수하다고 판단된 FKM으로 연료전지 스택용 가스켓을 제작하여 leak 평가를 실시한 결과, 체결압이 낮을수록, sealing pressure가 높을수록 짧은 시간에서 leak가 발생하였다. 또 Arrhenius Model을 이용하여 수명예측을 실시한 결과, $80^{\circ}C$에서 연속운전 시 가스켓의 수명은 60,000시간 이상 가능한 것으로 예측되었다.

Characterization of EVA/PCM/Silica Compound using Silica

  • Kim, Tae-Hyun;Choi, Kyung-Man;Lee, Jong-Hwan;Choi, Myeon-Cheon;Kim, Han-Seong
    • Elastomers and Composites
    • /
    • 제56권2호
    • /
    • pp.72-78
    • /
    • 2021
  • A phase-change material (PCM) is a material that has the ability to delay heat transfer by absorbing heat from its environment or releasing heat to its environment while its phase changes from solid to liquid or liquid to solid at a specific temperature. As it is applied, it can contribute to environmental conservation such as energy savings and carbon dioxide emission reduction. In order for a PCM to store and release heat, the volume change during its phase transition should be large, and thus a phase transition space is required. When a PCM is used as a polymer additive, it is confined within the polymer, and there is no phase transition space; thus, its ability to absorb and release heat is significantly reduced. Therefore, in this study, porous silica was used to provide EVA/PCM compounds with sufficient space for their phase transition, and to improve the compatibility between the EVA and PCM, modified silica is used: surface-modified 5 wt% silica with 3-methacryloxypropyltrimethoxysilane. The compound was prepared and compared with the silica compound. The presence or absence of the modified silica surface modification was confirmed using Fourier-transform infrared spectroscopy and thermogravimetric analysis, the heat capacity of the compound was evaluated based on a differential scanning calorimetry analysis, and its mechanical strength and morphology were determined using scanning electron microscopy.

Hexamethoxymethylmelamine이 고무-황동피복코드간의 접착에 미치는 영향 (The Effects of Hexamethoxymethylmelamine on the Adhesion of Rubber to Brase-Plated Steel Cord)

  • 김완영;김윤섭;육경창;김형순;이정용;최상원
    • 공업화학
    • /
    • 제3권3호
    • /
    • pp.422-429
    • /
    • 1992
  • 본 연구는 고무와 황동피복 코드간의 접착력 향상을 위하여 사용되는 resorcinol formaldehyde(RF) resin과 hexamethoxymethylmelamine(HMMM)이 고무 컴파운드내에서 나타내는 morphology와 접착특성에 대하여 고찰하였다. 가황후 resin은 구형의 형태로 시편 전체에 고르게 분포되어 있었고 그의 입경은 약 $2000{\AA}$정도였다. 코드와 함께 가황시킨 시편에서 코드 주위에 존재하는 resin함량이 감소한 것으로 보아 resin이 코드쪽으로 이동이 있었던 것으로 생각된다. 또한 모듈러스는 methylene donor인 HMMM의 양이 많을수록 증가하였으며, 접착층이 더 두껍게 형성되었다. 접착력은 열 노화에 의하여 상실되며 이는 대부분 초기에 발생함을 알 수 있었다. 접착컴파운드에서 가장 유리한 RF resin과 HMMM의 비는 물성, 접착층의 안정성, 열노화특성 등을 고려할 때 1 : 0.9이었다.

  • PDF