• Title/Summary/Keyword: Rubber Block

Search Result 90, Processing Time 0.028 seconds

Predictive Study of Hysteretic Rubber Friction Based on Multiscale Analysis (멀티스케일 해석을 통한 히스테리시스 고무 마찰 예측 연구)

  • Nam, Seungkuk;Oh, Yumrak;Jeon, Seonghee
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.378-383
    • /
    • 2014
  • This study predicts the of the hysteretic friction of a rubber block sliding on an SMA asphalt road. The friction of filled rubber on a rough surface is primarily determined by two elements:the viscoelasticity of the rubber and the multi-scale perspective asperities of the road. The surface asperities of the substrate exert osillating forces on the rubber surface leading to energy dissipation via the internal friction of the rubber when rubber slides on a hard and rough substrate. This study defines the power spectra at different length scales by using a high-resolution surface profilometer, and uses rubber and road surface samples to conduct friction tests. I consider in detail the case when the substrate surface has a self affine fractal structure. The theory developed by Persson is applied to describe these tests through comparison with the hysteretic friction coefficient relevant to the energy dissipation of the viscoelastic rubber attributable to cyclic deformation. The results showed differences in the absolute values of predicted and measured friction, but with high correlation between these values. Hence, the friction prediction model is an appropriate tool for separating the effects of each factor. Therefore, this model will contribute to clearer understanding of the fundamental principles of rubber friction.

Development of Powder Utilization of Waste Rubber

  • Kim, Jin-Kuk;Lee, Sung-Hyo;Hwang, Sung-Hyuk
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.220-224
    • /
    • 2001
  • Waste tires are a significant problem with the increasing in number of automobiles. Therefore, many researches have been studied on this field. Recycling is the one of the popular method aspect to environmental and economical in the treatment methods of the waste tire, which loads that the reuse of scrap tire rubber has been a challenge in the past. However, it is not easy method to melt down and mold into new products because the in rubber is a cross-linked polymer. Most difficulty in recycling is the recycled product is not economic. Therefore, the goal of this study is to develop the high valuable products for reused waste tires. In this paper, we try to make an economic recycled technology using scrapped waste tires. This technology may applied for manufacturing the end products such as a rubber block and a ballast mat for high-speed train.

  • PDF

Efficient treatment of rubber friction problems in industrial applications

  • Hofstetter, K.;Eberhardsteiner, J.;Mang, H.A.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.517-539
    • /
    • 2006
  • Friction problems involving rubber components are frequently encountered in industrial applications. Their treatment within the framework of numerical simulations by means of the Finite Element Method (FEM) is the main issue of this paper. Special emphasis is placed on the choice of a suitable material model and the formulation of a contact model specially designed for the particular characteristics of rubber friction. A coupled thermomechanical approach allows for consideration of the influence of temperature on the frictional behavior. The developed tools are implemented in the commercial FE code ABAQUS. They are validated taking the sliding motion of a rubber tread block as example. Such simulations are frequently encountered in tire design and development. The simulations are carried out with different formulations for the material and the frictional behavior. Comparison of the obtained results with experimental observations enables to judge the suitability of the applied formulations on a structural scale.

Fabrication of Rubber Block by using Recycled Waste Tires (폐타이어 재활용 고무보도블럭의 제조에 관한 연구)

  • 김진국
    • Resources Recycling
    • /
    • v.4 no.4
    • /
    • pp.70-75
    • /
    • 1995
  • Waste tires arc used as landifill, combustion and recycling. Rccenllg. lhc recycling of waste tires received a great attentmu fiam all industries. Thc rccgcling methods for w s l e tires are classified inla three culegoljz, a whole tirc, cmmb rubha and energy. T h ~ ssl iidy invesligvled the pruduclion ol Lhc ruhhcr block by using clumh cubbel oI wasle Ires. The process 01 manulacluring the ~uhher block was co~lsislerl ol several slepc: collecting lilts, ctuilnng and grinding hrcs, mixing crumh ruhher wlth bmder. and shaping under heat and pressure The effccl ol binder on ll~e ~uecl~ilnicaplr opcrlics o l r uhher hlock war also investigalcd. The economic feaqihility of a surface treiilmcnl and multilayas on the rubber block was dclcimincd

  • PDF

Predictive Study of Rubber Friction Considering Large Deformation Contact (대변형 접촉을 고려한 고무 마찰 예측 연구)

  • Nam, Seungkuk
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This paper presents the analysis of friction master curves for a sliding elastomer on rough granite. The hysteresis friction is calculated using an analytical model that considers the energy spent during the local deformation of the rubber due to surface asperities. The adhesion friction is also considered for dry friction prediction. The viscoelastic modulus of the rubber compound and the large-strain effective modulus are obtained from dynamic mechanical analysis (DMA). We accurately demonstrate the large strain of rubber that contacts with road substrate using the GW theory. We found that the rubber block deforms approximately to 40% strain. In addition, the viscoelastic master curve considering nonlinearity (at 40% strain) is derived based on the above finding. As viscoelasticity strongly depends on temperature, it can be assumed that the influence of velocity on friction is connected to the viscoelastic shift factors gained from DMA using the time-temperature superposition. In this study, we apply these shift factors to measure friction on dry granite over a velocity range for various temperatures. The measurements are compared to simulated hysteresis and adhesion friction using the Kluppel friction theory. Although friction results in the low-speed band match well with the simulation results, there are differences in the predicted and experimental results as the velocity increases. Thus, additional research is required for a more precise explanation of the viscoelastic material properties for better prediction of rubber friction characteristics.

Debonding Detection Techniques of FRP/Rubber Interface by the Ultrasonic Phase Reversal (초음파 위상 반전에 의한 FRP/고무 접착계면의 미접착 결함 검출 연구)

  • Kim Dong-Ryun;Chung Sang-Ki;Lee Sang-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.11-16
    • /
    • 2006
  • The object of this study is to develop new examination techniques for detecting the debonds in adhesive interface of different kinds of the material. Ultrasonic signal was modeled by theoretically analyzing ultrasonic propagation phenomenon of the adhesive interface and debonding interface. The test method using the phase reversal of the debonding interface applied to the FRP/Rubber test block. Aluminum/Rubber test block with the flat bottom hole was manufactured to quantitatively evaluate the minimum detection ability of the defects. The pulse echo reflection method and the phase reversal method were mutually compared and it was estimated that the phase reversal method could detect the debonds on the basis of the theoretically predicted ultrasonic signal and ultrasonic test data.

  • PDF

A Debonding Detection Technique for FRP/Rubber Interface by Ultrasonic Phase Reversal (초음파 위상 반전에 의한 FRP/고무 접착 계면의 미접착 결함 검출 연구)

  • Kim, Dong-Ryun;Lim, Soo-Yong;Chung, Sang-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.9-16
    • /
    • 2009
  • The object of this study is to develop new examination technique for detecting debond in adhesive interface of different kinds of materials. Ultrasonic signal was modeled by theoretically analyzing ultrasonic propagation phenomenon of the adhesive interface and debonding interface. The test method using the phase reversal of the debonding interface applied to the FRP/Rubber test block. Aluminum/Rubber test block with the flat bottom hole was manufactured to evaluate quantitatively the minimum detection ability of defects. The pulse echo reflection method and the phase reversal method were mutually compared and it was estimated that the phase reversal method could detect the debond on the basis of the theoretically predicted ultrasonic signal and ultrasonic test data.

Dynamic Characteristics of torsion for Marine Propulsion Shafting system with Elastic Rubber Coupling (고무 탄성커플링을 갖는 선박 추진용 축계 비틀림의 동특성)

  • 이돈출;김상환;유정대
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.742-748
    • /
    • 2003
  • As for marine propulsion shafting system using 4 stroke diesel engine, it is common to apply reduction gear box between diesel engine and shafting with a view of increasing mechanical efficiency, which inevitably require elastic coupling due to avoid chattering and hammering inside of gear box. In this study, optimum method of rectifying propulsion shafting system in case of 750ton fishing vessel specially in a view of torsional vibration, is theoretically studied. After exchange of diesel engine and gear box, analysis result of torsional vibration get worse and so some countermeasure are needed. The elastic coupling is modified from present block type rubber coupling showing relatively high torsional stiffness to rubber coupling with two series elements directly connected. The vibration measurement using two laser torsion meters was done during sea trial, whose results are compared to those of calculation and verified.

  • PDF

A Study on the Silicone Rubber of Sabot Assembly for the Velocity Multiplication of Mini Ball (소형구의 속도증폭을 위한 사보 조립체의 실리콘고무 특성 연구)

  • Kim, Young-Min;Jin, Doo-Han;Chung, Dong-Teak
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.395-401
    • /
    • 2015
  • A mini ball launch system was developed for the study of dynamic fracture of ceramic materials. The principle of velocity multiplication system is similar to two stage gun. The plastic sabot assembly houses steel plunger and the void filled with silicone rubber. The sabot is stopped by the stopper block then the steel plunger inside the sabot compress the silicone rubber to high pressure. Then the compressive energy of the silicone rubber is transferred to the ball. More than ten times of initial speed was attained. In this study, most effective silicone rubber for the highest final speed was chosen out of three different varieties by launch tests.

A Trend of R&D in Enviromental Thermoplastic Elastomer (환경친화형 열가소성 탄성체 기술개발 동향)

  • Lee, Yong-Sang;Jeong, Jung-Chea;Park, Jong-Man
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.245-249
    • /
    • 2010
  • Much interest on the thermoplastic elastomers (TPEs) has recently been attracted in commercial fields as well as scientific and applied research. The TPEs have their own characteristic area especially in relation with block copolymers as well as many other polymeric materials, since they show interesting features displayed by the conventional vulcanized rubber, and at the same time, by the thermoplastics. In addition, they are characterized by a set of interesting properties inherent to block and graft copolymers, variety of blends and vulcanized materials. The importance of TPE as organic materials can be evaluated by the number of published reports (papers, patents, technical reports, etc). For the suitable introduction of the TPE, historic, scientific, technical and commercial considerations should be taken into account. This review article starts with a brief discussion on historical considerations, followed by a introduction of the main preparations and analytical techniques utilized in chemical, structural, and morphological studies. The properties, processing tools, the position among organic materials, and applications of TPEs are also briefly reviewed. Finally, the most probable trends of their future development are discussed in a short final remarks.