• 제목/요약/키워드: Rubber

검색결과 4,960건 처리시간 0.029초

안전보호용 절연 고무장갑의 제조 및 특성 (Preparation and Properties of Insulating Rubber Gloves for Safety Protection)

  • 김공수;조석형;김상기
    • Elastomers and Composites
    • /
    • 제36권4호
    • /
    • pp.262-267
    • /
    • 2001
  • 내전압 특성과 항균성을 갖는 절연 고무장갑을 제조하기 위해 천연고무 라텍스 (NRL)와 수분산성 폴리우레탄 (PU) 그리고 4급 아민 키토산 (4N-chitosan)을 배합하여 침지법으로 제조하였다. 절연 고무장갑의 기계적인 특성은 폴리우레탄 함량이 증가할수록 인장강도는 증가하였으나 신장율은 저하되었으며, 노화후 인장강도 및 신장율의 잔존율은 폴리우레탄 함량 증가에 따라 증가하였다. 또한, 리칭시간이 증가할수록 내전압 특성이 증가하였으며, 3시간의 리칭시간에서 10000V의 내전압 성능을 나타내었다. 고무장갑에 4N-chitosan을 첨가한 결과 균이 거의 생존하지 않았다.

  • PDF

Butyl고무와 EPDM고무 블렌드의 경화특성, 물리적 성질 및 내오존성 (Cure Characteristics, Physical Properties and Ozone Resistance of Butyl Rubber and EPDM Rubber Blends)

  • 박찬영;황영배
    • Elastomers and Composites
    • /
    • 제46권4호
    • /
    • pp.329-334
    • /
    • 2011
  • 일반적으로 butyl 고무(IIR : isobutylene isoprene rubber)는 우수한 내기체투과성 및 저반발 탄성체로서 우수한 충격흡수성을 갖는다. 본 실험에서는 butyl고무에 EPDM(ethylene propylene diene monomer)을 기계적 혼련법으로 blend 혼련물을 제조하여 이들의 가교 거동, 물리적 성질 및 내오존성 등을 측정하였다. EPDM 고무량이 증가할수록 최적 가황시간이 단축되는 경향을 보였다. 기체투과속도 테스트에 의한 내기체투과성 측정 결과 butyl고무량이 50 wt% 이상일 경우에는 기체투과도가 현저히 감소하였다. 한편 butyl rubber/EPDM 블렌드의 경우에 EPDM의 함량이 25 wt.% 이상 함유될 경우 내오존성이 향상되어 50 pphm, $50^{\circ}C$, 120시간 조건에서도 아무런 표면변화가 없었다.

Theoretical tensile model and cracking performance analysis of laminated rubber bearings under tensile loading

  • Chen, Shicai;Wang, Tongya;Yan, Weiming;Zhang, Zhiqian;Kim, Kang-Suk
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.75-87
    • /
    • 2014
  • To analyze the tension performance of laminated rubber bearings under tensile loading, a theoretical tension model for analyzing the rubber bearings is proposed based on the theory of elasticity. Applying the boundary restraint condition and the assumption of incompressibility of the rubber (Poisson's ratio of the rubber material is about 0.5 according the existing research results), the stress and deformation expressions for the tensile rubber layer are derived. Based on the derived expressions, the stress distribution and deformation pattern especially for the deformation shapers of the free edges of the rubber layer are analyzed and validated with the numerical results, and the theory of cracking energy is applied to analyze the distributions of prediction cracking energy density and gradient direction. The prediction of crack initiation and crack propagation direction of the rubber layers is investigated. The analysis results show that the stress and deformation expressions can be used to simulate the stress distribution and deformation pattern of the rubber layer for laminated rubber bearings in the elastic range, and the crack energy method of predicting failure mechanism are feasible according to the experimental phenomenon.

폐 EPDM 고무의 재활용을 위한 기초적 연구 (A Study on Recycling of EPDM Reclaimed Rubber)

  • 장두희;김지훈;김영주
    • 한국환경과학회지
    • /
    • 제19권3호
    • /
    • pp.365-370
    • /
    • 2010
  • In this study, we carried out the evaluation of EPDM(Ethylene Propylene Diene Monomer) reclaimed rubber mixing with natural rubber at various mixing ratio to reuse as rubber filler. The scorch time and moony viscosity was analyzed to evaluate the effect of cure behavior. And also, we analyzed the tensile strength, the elongation at break and cure time to evaluate the variation of cure behavior. As the results, the scorch time and optimal cure time was decreased according to the increasing of EPDM reclaimed rubber. However, the moony viscosity was increased at each mixing ratio. In case of the added EPDM reclaimed rubber was 20 phr(parts by weight per 100 parts by weight of rubber), the hardness and specific gravity was increased a little. The hardness and specific gravity was increased in rapidly under 40 phr of the added EPEM reclaimed rubber. The tensile strength and elongation at break of the compound of natural and EPDM reclaimed rubber was rapidly decreased compared with its natural rubber when the ratio of adding EPDM reclaimed rubber was over 40 phr.

마찰 에너지 해석을 통한 러버 트랙(Rubber Track)의 마모율 예측 (Prediction of Wear Rate for Rubber Track by Using Frictional Energy Analysis)

  • 강종진;조진래;정의봉
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.125-133
    • /
    • 2011
  • The wear of rubber track being in contact with the road surface is an important subject because it decreases the traction performance and the operating efficiency of tracked vehicle. For the above reasons, many attempts have been made to quantitatively calculate the rubber track. However, it depends on the experimental methods which are highly time- and cost-consuming. Therefore, the numerical simulation approach is highly desirable, but it needs to model the complex geometry and the material behavior in details as well as the interaction with the road surface. In this study, the rubber track and its material behavior are elaborately modeled since these factors are very important in the prediction of the wear rate of the rubber track. Accordingly to the studies on the rubber wear by previous investigations, it has been found that the wear is greatly influenced by the frictional energy. The frictional energy of rubber track is computed by utilizing the 3D finite element analysis of the rubber track, and the wear rate is evaluated making use of the frictional energy and a wear model.

The Rubber Pricing Model: Theory and Evidence

  • SRISUKSAI, Pithak
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권11호
    • /
    • pp.13-22
    • /
    • 2020
  • This research explores the appropriate rubber pricing model and the consistent empirical evidence. This model has been derived from the utility function and firm profit-maximization model of commodity goods. The finding shows that the period t - 1 affects expected commodity price and expected profit of commodity production. In fact, a change in the world price of rubber in the past period led to a change in the expected price of rubber in the short run which influenced the expected rubber profit. As a result, the past-period free on board price has an entirety effect on expected farm price of rubber given an exchange rate. In addition, the rubber pricing model indicates that the profit of local farmer on rubber plant depends solely on the world price of rubber in the short run in case of Thailand. In an empirical study, it was found that a change in the price of ribbed smoke sheet 3 in Singapore Commodity Exchange significantly and positively determined the fluctuation of rubber price at the farm gate in Thailand which was consistent with the behavior of the Thai farmers. Both prices are also cointegrated in the long run. That is, the result states that the VECM is an appropriated pricing model for forecasting the farm price in Thailand.

Evaluation of the Aging Life of the Rubber Pad in Power Window Switch

  • Kang, Yong Kyu;Choi, Byung Ik;Woo, Chang Su;Kim, Wan Doo
    • Elastomers and Composites
    • /
    • 제54권4호
    • /
    • pp.351-358
    • /
    • 2019
  • To evaluate the aging of a rubber pad in power window switch which is the part of a vehicle, the accelerated thermal aging test of rubber pad material is performed. Finite element analysis was performed using the nonlinear material constants of the rubber pad to calculate the operating force, and the Arrhenius relationship was derived from the aging temperature and time. The aging test was performed at 150, 180, 210, or 240 ℃ for 1 to 60 days. When the operating force of the rubber pad is changed by 10% from the initial value, the service life is expected to be 113 years, which is much longer than the life of the vehicle. This indicates that the aging life of the rubber pad is sufficiently safe and the operating force of the rubber pad during the life of the vehicle (20 years) was decreased by approximately 8.4%. By examining the correlation between the shear elastic modulus and operating force calculated from finite element analysis under each aging test condition, the changes in the operating force of the rubber pad and the shear elastic modulus showed good linear relationship. The aging life could be predicted by the change in shear elastic modulus and a process for predicting the aging life of automotive power window switch rubber pad parts is described herein.

ATH의 입자크기 및 첨가량에 따른 실리콘 고무의 전기적 특성 (Electrical Properties of Silicone Rubber with Different Particle Size and Amount of ATH)

  • 박효열;강동필;안명상;명인혜;이태희;이태주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.227-230
    • /
    • 2003
  • Silicone rubber has very excellent chemical stability and hydrophobicity. A hydrophobic surface can prevent the formation of continuous water films on the surface in wet and heavily contaminated conditions. This phenomenon contributes to the suppression of leakage current and partial discharges on insulator surfaces. Silicone rubber has been used much for housing materials of polymer insulators. ATH is added to the silicone rubber for improvement of its resistance against surface discharge. In this paper, ATH with different particle size and content was added to the silicone rubber during compounding. Silicone rubber was deteriorated by a corona treatment. Hydrophobicity recovery rate after corona treatment and arc resistance of silicone rubber were investigated. Hydrophobicity recovery rate of silicone rubber was evaluated by the measurement of contact angle. Arc resistance was evaluated by measuring weight loss of silicone rubber after arc resistance test. It was observed that the hydrophobicity recovery rate and arc resistance of silicone rubber were different when different particle size and content of ATH were added.

  • PDF

멀티스케일 해석을 통한 히스테리시스 고무 마찰 예측 연구 (Predictive Study of Hysteretic Rubber Friction Based on Multiscale Analysis)

  • 남승국;오염락;전성희
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.378-383
    • /
    • 2014
  • This study predicts the of the hysteretic friction of a rubber block sliding on an SMA asphalt road. The friction of filled rubber on a rough surface is primarily determined by two elements:the viscoelasticity of the rubber and the multi-scale perspective asperities of the road. The surface asperities of the substrate exert osillating forces on the rubber surface leading to energy dissipation via the internal friction of the rubber when rubber slides on a hard and rough substrate. This study defines the power spectra at different length scales by using a high-resolution surface profilometer, and uses rubber and road surface samples to conduct friction tests. I consider in detail the case when the substrate surface has a self affine fractal structure. The theory developed by Persson is applied to describe these tests through comparison with the hysteretic friction coefficient relevant to the energy dissipation of the viscoelastic rubber attributable to cyclic deformation. The results showed differences in the absolute values of predicted and measured friction, but with high correlation between these values. Hence, the friction prediction model is an appropriate tool for separating the effects of each factor. Therefore, this model will contribute to clearer understanding of the fundamental principles of rubber friction.

Effects of Inorganic Fillers on Mechanical Properties of Silicone Rubber

  • Kim, Gyu Tae;Lee, Young Seok;Ha, KiRyong
    • Elastomers and Composites
    • /
    • 제54권2호
    • /
    • pp.142-148
    • /
    • 2019
  • In this study, the effects of filler particle size and shape on the physical properties of silicone rubber composites were investigated using inorganic fillers (Minusil 5, Celite 219, and Nyad 400) except silica, which was already present as a reinforcing filler of silicone rubber. Fillers with small particle sizes are known to facilitate the formation of the bound rubber by increasing the contact area with the polymer. However, in this experiment, the bound rubber content of Celite 219-added silicone composite was higher than that of Minusil 5-added silicone composite. This was attributed to the porous structure of Celite 219, which led to an increase in the internal surface area of the filler. When the inorganic fillers were added, both thermal decomposition temperature and thermal stability were improved. The bound rubber formed between the silicone rubber and inorganic filler affected the degree of crosslinking of the silicone composite. It is well-known that as the size of the reinforcing filler decreases, the reinforcing effect increases. However, in this experiment, the hardness of the composite material filled with Celite 219 was the highest compared to the other three composites. Furthermore, the highest value of 2.19 MPa was observed for 100% modulus, and the fracture elongation was the lowest at 469%. This was a result of excellent interaction between Celite 219 filler and silicone rubber.