• 제목/요약/키워드: Rp1

검색결과 771건 처리시간 0.023초

The inhibitory activity of ginsenoside Rp4 in adenosine diphosphate-induced platelet aggregation

  • Son, Young-Min;Jeong, Da-Hye;Park, Hwa-Jin;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • 제41권1호
    • /
    • pp.96-102
    • /
    • 2017
  • Background: Korean ginseng, Panax ginseng Meyer, has been used as a traditional oriental medicine to treat illness and promote health for several thousand years. Ginsenosides are the main constituents for the pharmacological effects of P. ginseng. Since several ginsenosides, including ginsenoside (G)-Rg3 and G-Rp1, have reported antiplatelet activity, here we investigate the ability of G-Rp4 to modulate adenosine diphosphate (ADP)-induced platelet aggregation. The ginsenoside Rp4, a similar chemical structure of G-Rp1, was prepared from G-Rg1 by chemical modification. Methods: To examine the effects of G-Rp4 on platelet activation, we performed several experiments, including antiplatelet ability, the modulation of intracellular calcium concentration, and P-selectin expression. In addition, we examined the activation of integrin ${\alpha}IIb{\beta}_3$ and the phosphorylation of signaling molecules using fibrinogen binding assay and immunoblotting in rat washed platelets. Results: G-Rp4 inhibited ADP-induced platelet aggregation in a dose-dependent manner. We found that G-Rp4 decreased calcium mobilization and P-selectin expression in ADP-activated platelets. Moreover, fibrinogen binding to integrin ${\alpha}IIb{\beta}_3$ by ADP was attenuated in G-Rp4-treated platelets. G-Rp4 significantly attenuated phosphorylation of extracellular signal-regulated protein kinases 1 and 2, p38, and c-Jun N-terminal kinase, as well as protein kinase B, phosphatidylinositol 3-kinase, and phospholipase C-${\gamma}$ phosphorylations. Conclusion: G-Rp4 significantly inhibited ADP-induced platelet aggregation and this is mediated via modulating the intracellular signaling molecules. These results indicate that G-Rp4 could be a potential candidate as a therapeutic agent against platelet-related cardiovascular diseases.

Ginsenoside Rp1 Exerts Anti-inflammatory Effects via Activation of Dendritic Cells and Regulatory T Cells

  • Bae, Jin-Gyu;Koo, Ji-Hye;Kim, Soo-Chan;Park, Tae-Yoon;Kim, Mi-Yeon
    • Journal of Ginseng Research
    • /
    • 제36권4호
    • /
    • pp.375-382
    • /
    • 2012
  • Ginsenoside Rp1 (G-Rp1) is a saponin derivate that provides anti-metastatic activities through inhibition of the NF-${\kappa}B$ pathway. In this study, we examined the effects of G-Rp1 on regulatory T cell (Treg) activation. After treatment of splenocytes with G-Rp1, Tregs exhibited upregulation of IL-10 expression, and along with dendritic cells (DCs), these Tregs showed increased cell number compared to other cell populations. The effect of G-Rp1 on Treg number was augmented in the presence of lipopolysaccharide (LPS), which mimics pathological changes that occur during inflammation. However, depletion of DCs prevented the increase in Treg number in the presence of G-Rp1 and/or LPS. In addition, G-Rp1 promoted the differentiation of the memory types of $CD4^+Foxp3^+CD62L^{low}$ Tregs rather than the generation of new Tregs. In vivo experiments also demonstrated that Tregs and DCs from mice that were fed G-Rp1 for 7 d and then injected with LPS exhibited increased activation compared with those from mice that were injected with LPS alone. Expression of TGF-${\beta}$ and CTLA4 in Tregs was increased, and upregulation of IL-2 and CD80/CD86 expression by DCs affected the suppressive function of Tregs through IL-2 receptors and CTLA4. These data demonstrate that G-Rp1 exerts anti-inflammatory effects by activating Tregs in vitro and in vivo.

Phosphorylation of rpS3 by Lyn increases translation of Multi-Drug Resistance (MDR1) gene

  • Woo Sung Ahn;Hag Dong Kim;Tae Sung Kim;Myoung Jin Kwak;Yong Jun Park;Joon Kim
    • BMB Reports
    • /
    • 제56권5호
    • /
    • pp.302-307
    • /
    • 2023
  • Lyn, a tyrosine kinase that is activated by double-stranded DNA-damaging agents, is involved in various signaling pathways, such as proliferation, apoptosis, and DNA repair. Ribosomal protein S3 (RpS3) is involved in protein biosynthesis as a component of the ribosome complex and possesses endonuclease activity to repair damaged DNA. Herein, we demonstrated that rpS3 and Lyn interact with each other, and the phosphorylation of rpS3 by Lyn, causing ribosome heterogeneity, upregulates the translation of p-glycoprotein, which is a gene product of multidrug resistance gene 1. In addition, we found that two different regions of the rpS3 protein are associated with the SH1 and SH3 domains of Lyn. An in vitro immunocomplex kinase assay indicated that the rpS3 protein acts as a substrate for Lyn, which phosphorylates the Y167 residue of rpS3. Furthermore, by adding various kinase inhibitors, we confirmed that the phosphorylation status of rpS3 was regulated by both Lyn and doxorubicin, and the phosphorylation of rpS3 by Lyn increased drug resistance in cells by upregulating p-glycoprotein translation.

RP4::Mu cts 및 RP4::mini-Mu Pseudomonas sp.로의 전달 (Transfer RP4::Mu cts and RP4::mini-Mu from E. coli to Pseudomonas sp.)

  • 고윤원;허연주;이영록
    • 미생물학회지
    • /
    • 제26권3호
    • /
    • pp.173-180
    • /
    • 1988
  • 염색체 유전자를 전달시키기 위한 기초작업으로 RP4 :: Mu cts와 RP4 :: mini-Mu 잡종 플라스미드를 접합에 의하여 E.. coli로 부터 Pseudomonas로 전달시켰다. RP4::Mu cts와 RP4:: mini-Mu의 수용세포는 플라스미드를 가지지 아니하는 Pseudomonas 균주들의 항생세 내성, 탄화수소 자화능 등의 유전적 지표를 조사하여 사용하였다. RP4::mini-Mu는 1$10^{-2}$ - $10^{-4}$의 빈도로 전달되었으며 RP4:: Mu cts는 Pseµdomonas aeruginosa KU557로는 $10^{-2}$의 빈도로, 그 이외의 수용세포로는 10?7의 빈도로 천달되었다. 접합체에 전달된 플라스미드의 존재는 암피실린, 카나마이신, 테트라싸이클린에 대한 내성과 전기영돔에 의해 확인하였으며 특히 RP4::Mu cts는 $43^{\circ}C$에서의 플라크 행성으로도 확인하였다. 접합체들로 부터 생성된 Mu 파아지는 약 $10^{5}$의 P.F.U.를 나타냈으며 전달된 RP4:: Mu cts와 RP4:: mini-Mu는 접합체들에서 비교적 안장한 것으로 밝혀졌다.

  • PDF

Ribosomal protein S3 is phosphorylated by Cdk1/cdc2 during G2/M phase

  • Yoon, In-Soo;Chung, Ji-Hyung;Hahm, Soo-Hyun;Park, Min-Ju;Lee, You-Ri;Ko, Sung-Il;Kang, Lin-Woo;Kim, Tae-Sung;Kim, Joon;Han, Ye-Sun
    • BMB Reports
    • /
    • 제44권8호
    • /
    • pp.529-534
    • /
    • 2011
  • Ribosomal protein S3 (rpS3) is a multifunctional protein involved in translation, DNA repair, and apoptosis. The relationship between rpS3 and cyclin-dependent kinases (Cdks) involved in cell cycle regulation is not yet known. Here, we show that rpS3 is phosphorylated by Cdk1 in G2/M phase. Co-immunoprecipitation and GST pull-down assays revealed that Cdk1 interacted with rpS3. An in vitro kinase assay showed that Cdk1 phosphorylated rpS3 protein. Phosphorylation of rpS3 increased in nocodazole-arrested mitotic cells; however, treatment with Cdk1 inhibitor or Cdk1 siRNA significantly attenuated this phosphorylation event. The phosphorylation of a mutant form of rpS3, T221A, was significantly reduced compared with wild-type rpS3. Decreased phosphorylation and nuclear accumulation of T221A was much more pronounced in G2/M phase. These results suggest that the phosphorylation of rpS3 by Cdk1 occurs at Thr221 during G2/M phase and, moreover, that this event is important for nuclear accumulation of rpS3.

동결건조 보호제와 기질이 동결건조된 Bacillus sp. SH1RP8의 생존율에 미치는 영향 (Effect of Substrates and Lyoprotectant on the Survival Ratio of Lyophilized Bacillus sp. SH1RP8)

  • 홍선화;심준규;이은영
    • 한국미생물·생명공학회지
    • /
    • 제43권4호
    • /
    • pp.385-390
    • /
    • 2015
  • 본 연구는 식물성장촉진 근권세균인 Bacillus sp. SH1RP8를 친환경 생물비료로 이용하기 위하여 수행되었다. SH1RP8 균주를 동결건조시 세포의 용혈을 방지하도록 여러 가지 동결건조 보호제를 첨가하여 균주의 성장과 활성에 미치는 영향을 알아보았다. SH1RP8 균주의 동결건조 시 동결건조 보호제로 skim milk, glucose, peptone 등을 이용하였을 때, 그 중 5%의 skim milk를 첨가하였을 때 가장 높은 (30.6%)의 생존율을 보였다. 또한, 균주의 성장을 촉진하는 기질 그룹을 첨가하여 5%의 skim milk 단독으로 첨가한 경우와 기질 그룹을 각각 첨가한 경우의 동결건조 보호 효과를 비교하여 보았다. 그 결과 5% skim milk에 glycerol을 동시에 첨가할 경우 균주의 생존율이 skim milk 단독 첨가효과와 비교 시 214.29%의 향상율을 보여주었다. 또한 동결건조된 Bacillus sp. SH1RP8 은 매우 효과적인 PGPR로 활성을 보여주어 생물비료로서의 훌륭한 기능이 기대된다.

Ginsenoside Rp1, a Ginsenoside Derivative, Blocks Promoter Activation of iNOS and COX-2 Genes by Suppression of an IKKβ-mediated NF-κB Pathway in HEK293 Cells

  • Shen, Ting;Lee, Jae-Hwi;Park, Myung-Hwan;Lee, Yong-Gyu;Rho, Ho-Sik;Kwak, Yi-Seong;Rhee, Man-Hee;Park, Yung-Chul;Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • 제35권2호
    • /
    • pp.200-208
    • /
    • 2011
  • Ginsenoside (G) $Rp_1$ is a ginseng saponin derivative with anti-cancer and anti-inflammatory activities. In this study, we examined the mechanism by which G-$Rp_1$ inhibits inflammatory responses of cells. We did this using a strategy in which DNA constructs containing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) promoters were transfected into HEK293 cells. G-$Rp_1$ strongly inhibited the promoter activities of COX-2 and iNOS; it also inhibited lipopolysaccharide induced upregulation of COX-2 and iNOS mRNA levels in RAW264.7 cells. In HEK293 cells G-$Rp_1$ did not suppress TANK binding kinase 1-, Toll-interleukin-1 receptor-domain-containing adapter-inducing interferon-${\beta}$ (TRIF)-, TRIF-related adaptor molecule (TRAM)-, or activation of interferon regulatory factor (IRF)-3 and nuclear factor (NF)-${\kappa}$B by the myeloid differentiation primary response gene (MyD88)-induced. However, G-$Rp_1$ strongly suppressed NF-${\kappa}$B activation induced by I${\kappa}$B kinase (IKK)${\beta}$ in HEK293 cells. Consistent with these results, G-$Rp_1$ substantially inhibited IKK${\beta}$-induced phosphorylation of $I{\kappa}B{\alpha}$ and p65. These results suggest that G-$Rp_1$ is a novel anti-inflammatory ginsenoside analog that can be used to treat IKK${\beta}$/NF-${\kappa}$B-mediated inflammatory diseases.

Understanding the RNA-Specificity of HCV RdRp: Implications for Anti-HCV Drug Discovery

  • Kim, Jin-young;Chong, You-hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권1호
    • /
    • pp.59-64
    • /
    • 2006
  • Unlike other viral polymerases, HCV RNA-dependent RNA polymerase (RdRp) has not been successfully inhibited by nucleoside analogues presumably due to its strong substrate specificity for RNA. Thus, in order to understand the RNA-specificity of HCV RdRp, the structural characteristics of the active site was investigated. The hereto unknown 2-OH binding pocket at the active site of RdRp provides invaluable implication for the development of novel anti-HCV nucleoside analogues.

전산화단층 촬영상의 임계치가 3차원 의학모델 정확도에 미치는 영향에 대한 연구 (Influence of threshold value of computed tomography on the accuracy of 3-dimensional medical model)

  • 이병도;이완
    • Imaging Science in Dentistry
    • /
    • 제32권1호
    • /
    • pp.27-33
    • /
    • 2002
  • Purpose: To evaluate the influence of threshold value of computed tomography on the accuracy of rapid prototyping (RP) medical model Material and Methods : CT datas of a human dry skull were transferred from CT scanner via compact disk to a personal computer (PC). 3-dimensional image reconstruction on PC by V-works/sup TM/ 3.0 (CyberMed. Inc.) software and RP models fabrication were followed. 2-RP models were produced by threshold value of 500 and 800 selected in surface rendering process. Linear measurements between arbitrary 12 anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared. Thus, the accuracy of 500 RP and 800RP models was respectively evaluated. Results: There was mean difference (% difference) in absolute value of 2.27 mm (2.73%) between linear measurements of dry skull and 500 RP model. There was mean difference (% difference) in absolute value of 1.94 mm (2.52%) between linear measurements of dry skull and 800 RP model. Conclusion: Slight difference of threshold value in rendering process of 3-D modelling made a influence on the accuracy of RP medical model.

  • PDF

단백체 분석을 위한 일차원 및 이차원 역상크로마토그래피의 비교 (Comparison of 2-D RP-RP MS/MS with 1-D RP MS/MS for Proteomic Analysis)

  • 문평곤;조영은;백문창
    • 약학회지
    • /
    • 제54권5호
    • /
    • pp.377-386
    • /
    • 2010
  • Single-dimensional (1-D) and two-dimensional (2-D) LC methods were utilized to separate peptides from various sources followed by MS/MS analysis. Two-dimensional ultra-high performance liquid chromatography is a useful tool for proteome analysis, providing a greater peak capacity than 1-D LC. The most popular 2-D LC approach used today for proteomic research combines strong cation exchange and reversed-phase LC. We have evaluated an alternative mode for 2-D LC of peptides using 2-D RP-RP nano UPLC Q-TOF Mass Spectrometry, employing reversed-phase columns in both separation dimensions. As control experiments, we identified 129 proteins in 1-D LC and 322 proteins in 2-D LC from E. coli extract peptides. Furthermore, we applied this method to rat primary hepatocyte and a total of 170 proteins were identified from 1-D LC, and 527 proteins were identified from all 2-D LC system. The in-depth protein profiling established by this 2-D LC MS/MS from rat primary hepatocyte could be a very useful reference for future applications in regards to drug induced liver toxicity.