• Title/Summary/Keyword: RowAMD

Search Result 2, Processing Time 0.014 seconds

RowAMD Distance: A Novel 2DPCA-Based Distance Computation with Texture-Based Technique for Face Recognition

  • Al-Arashi, Waled Hussein;Shing, Chai Wuh;Suandi, Shahrel Azmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5474-5490
    • /
    • 2017
  • Although two-dimensional principal component analysis (2DPCA) has been shown to be successful in face recognition system, it is still very sensitive to illumination variations. To reduce the effect of these variations, texture-based techniques are used due to their robustness to these variations. In this paper, we explore several texture-based techniques and determine the most appropriate one to be used with 2DPCA-based techniques for face recognition. We also propose a new distance metric computation in 2DPCA called Row Assembled Matrix Distance (RowAMD). Experiments on Yale Face Database, Extended Yale Face Database B, AR Database and LFW Database reveal that the proposed RowAMD distance computation method outperforms other conventional distance metrics when Local Line Binary Pattern (LLBP) and Multi-scale Block Local Binary Pattern (MB-LBP) are used for face authentication and face identification, respectively. In addition to this, the results also demonstrate the robustness of the proposed RowAMD with several texture-based techniques.

Bilateral Diagonal 2DLDA Method for Human Face Recognition (얼굴 인식을 위한 쌍대각 2DLDA 방법)

  • Kim, Young-Gil;Song, Young-Jun;Kim, Dong-Woo;Ahn, Jae-Hyeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.648-654
    • /
    • 2009
  • In this paper, a method called bilateral diagonal 2DLDA is proposed for face recognition. Two methods called Dia2DPCA and Dia2DLDA were suggested to reserve the correlations between the variations in the rows and columns of diagonal images. However, these methods work in the row direction of these images. A row-directional projection matrix can be obtained by calculating the between-class and within-class covariance matrices making an allowance for the column variation of alternative diagonal face images. In addition, column-directional projection matrix can be obtained by calculating the between-class and within-class covariance matrices making an allowance for the row variation in diagonal images. A bilateral projection scheme was applied using left and right multiplying projection matrices. As a result, the dimension of the feature matrix and computation time can be reduced. Experiments carried out on an ORL face database show that the proposed method with three different distance measures, namely, Frobenius, Yang and AMD, is more accurate than some methods, such as 2DPCA, B2DPCA, 2DLDA, etc.