• Title/Summary/Keyword: Routing protocol

Search Result 1,467, Processing Time 0.024 seconds

CAMR: Congestion-Aware Multi-Path Routing Protocol for Wireless Mesh Networks

  • Jang, Seowoo;Kang, Seok-Gu;Yoon, Sung-Guk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.411-419
    • /
    • 2017
  • The Wireless Mesh Network (WMN) is a multi-hop wireless network consisting of mesh routers and clients, where the mesh routers have minimal mobility and form the backbone. The WMN is primarily designed to access outer network to mesh clients through backhaul gateways. As traffic converges on the gateways, traffic hotspots are likely to form in the neighborhood of the gateways. In this paper, we propose Congestion Aware Multi-path Routing (CAMR) protocol to tackle this problem. Upon congestion, CAMR divides the clients under a mesh STA into two groups and returns a different path for each group. The CAMR protocol triggers multi-path routing in such a manner that the packet reordering problem is avoided. Through simulations, we show that CAMR improves the performance of the WMN in terms of throughput, delay and packet drop ratio.

A Note on a Secure Routing Method for ad-hoc Networks (ad-hoc 네트워크에서의 안전한 라우팅 기법에 관한 연구)

  • Hwnag, Jung-Yeon;Kim, Kyung-Sin;Kim, Hyoung-Joong;Lee, Dong-Hoon
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.2
    • /
    • pp.53-56
    • /
    • 2009
  • Kim et al. recently proposed an identity-based aggregate signature scheme to construct a secure routing protocol in ad-hoc networks. In this note, we unfortunately show that the identity-based aggregate signature scheme is universally forgeable, that is, anyone can forge the signature of any messages of its choice. This subsequently means that their secure routing protocol is not secure.

  • PDF

Energy Aware Landmark Election and Routing Protocol for Grid-based Wireless Sensor Network (그리드 기반 무선센서네트워크에서 에너지 인지형 Landmark 선정 및 라우팅 프로토콜)

  • Sanwar Hosen, A.S.M.;Cho, Gi-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.177-180
    • /
    • 2011
  • In practice, it is well known that geographical and/or location based routing is highly effective for wireless sensor network. Here, electing some landmarks on the network and forwarding data based on the landmark is one of the good approaches for a vast sensing field with holes. In the most previous works, landmarks are elected without considering the residual energy on each sensor. In this paper, we propose an Energy aware Landmark Election and Routing (ELER) protocol to establish a stable routing paths and reduce the total power consumption. The proposed protocol makes use of each sensor's energy level on electing the landmarks, which would be utilized to route a packet towards the target region using greedy forwarding method. Our simulation results illustrate that the proposed scheme can significantly reduce the power dissipation and effectively lengthen the lifetime of the network.

Energy-aware Tree Routing Protocol for Wireless Sensor Networks (센서 네트워크에서 에너지 효율성을 고려한 트리 라우팅 프로토콜)

  • Hwang, So-Young;Jin, Gwang-Ja;Shin, Chang-Sub;Kim, Bong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.624-629
    • /
    • 2008
  • Many routing protocols have been proposed for sensor networks where energy awareness and reliability are essential design issues. This paper proposes an Energy-aware Tree Routing Protocol (ETRP) for Wireless Sensor Networks. The proposed scheme relates to reliable and energy efficient data routing by selecting a data transmission path in consideration of residual energy at each node to disperse energy consumption across the networks and reliably transmit the data through a detour path when there is link or node failure. Simulation results show that the proposed method outperformed traditional Tree Routing (TR) by 23.5% in network lifetime.

Learning Automata Based Multipath Multicasting in Cognitive Radio Networks

  • Ali, Asad;Qadir, Junaid;Baig, Adeel
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.406-418
    • /
    • 2015
  • Cognitive radio networks (CRNs) have emerged as a promising solution to the problem of spectrum under utilization and artificial radio spectrum scarcity. The paradigm of dynamic spectrum access allows a secondary network comprising of secondary users (SUs) to coexist with a primary network comprising of licensed primary users (PUs) subject to the condition that SUs do not cause any interference to the primary network. Since it is necessary for SUs to avoid any interference to the primary network, PU activity precludes attempts of SUs to access the licensed spectrum and forces frequent channel switching for SUs. This dynamic nature of CRNs, coupled with the possibility that an SU may not share a common channel with all its neighbors, makes the task of multicast routing especially challenging. In this work, we have proposed a novel multipath on-demand multicast routing protocol for CRNs. The approach of multipath routing, although commonly used in unicast routing, has not been explored for multicasting earlier. Motivated by the fact that CRNs have highly dynamic conditions, whose parameters are often unknown, the multicast routing problem is modeled in the reinforcement learning based framework of learning automata. Simulation results demonstrate that the approach of multipath multicasting is feasible, with our proposed protocol showing a superior performance to a baseline state-of-the-art CRN multicasting protocol.

Intelligent Internal Stealthy Attack and its Countermeasure for Multicast Routing Protocol in MANET

  • Arthur, Menaka Pushpa;Kannan, Kathiravan
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1108-1119
    • /
    • 2015
  • Multicast communication of mobile ad hoc networks is vulnerable to internal attacks due to its routing structure and high scalability of its participants. Though existing intrusion detection systems (IDSs) act smartly to defend against attack strategies, adversaries also accordingly update their attacking plans intelligently so as to intervene in successful defending schemes. In our work, we present a novel indirect internal stealthy attack on a tree-based multicast routing protocol. Such an indirect stealthy attack intelligently makes neighbor nodes drop their routing-layer unicast control packets instead of processing or forwarding them. The adversary targets the collision avoidance mechanism of the Medium Access Control (MAC) protocol to indirectly affect the routing layer process. Simulation results show the success of this attacking strategy over the existing "stealthy attack in wireless ad hoc networks: detection and countermeasure (SADEC)" detection system. We design a cross-layer automata-based stealthy attack on multicast routing protocols (SAMRP) attacker detection system to identify and isolate the proposed attacker. NS-2 simulation and analytical results show the efficient performance, against an indirect internal stealthy attack, of SAMRP over the existing SADEC and BLM attacker detection systems.

Enhanced OLSR for Defense against DOS Attack in Ad Hoc Networks

  • Marimuthu, Mohanapriya;Krishnamurthi, Ilango
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • Mobile ad hoc networks (MANET) refers to a network designed for special applications for which it is difficult to use a backbone network. In MANETs, applications are mostly involved with sensitive and secret information. Since MANET assumes a trusted environment for routing, security is a major issue. In this paper we analyze the vulnerabilities of a pro-active routing protocol called optimized link state routing (OLSR) against a specific type of denial-of-service (DOS) attack called node isolation attack. Analyzing the attack, we propose a mechanism called enhanced OLSR (EOLSR) protocol which is a trust based technique to secure the OLSR nodes against the attack. Our technique is capable of finding whether a node is advertising correct topology information or not by verifying its Hello packets, thus detecting node isolation attacks. The experiment results show that our protocol is able to achieve routing security with 45% increase in packet delivery ratio and 44% reduction in packet loss rate when compared to standard OLSR under node isolation attack. Our technique is light weight because it doesn't involve high computational complexity for securing the network.

Performance Evaluation of MAC Protocols with Application to MANET Routing for Distributed Cognitive Radio Networks (분산 무선 인지 네트워크를 위한 MAC 프로토콜의 MANET 라우팅 적용 성능 분석)

  • Kwon, Sehoon;Kim, Hakwon;Kim, Bosung;Roh, Byeong-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.4
    • /
    • pp.97-106
    • /
    • 2014
  • In this paper, we propose a design method to extend certain cognitive radio (CR) MAC protocols originally proposed only for the one hop applications in distributed CR networks to MANET routing protocols. Among several CR MAC protocols, the opportunistic MAC (called O-MAC) and the opportunistic period MAC (called OP-MAC) are considered, and AODV as MANET routing protocol is used. We implement the protocols using OPNET network simulator, and compare the performances in both MAC and AODV routing environments. With the experiments, we analyze the relationship between MAC and routing performances of the CR protocols.

Trust-aware secure routing protocol for wireless sensor networks

  • Hu, Huangshui;Han, Youjia;Wang, Hongzhi;Yao, Meiqin;Wang, Chuhang
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.674-683
    • /
    • 2021
  • A trust-aware secure routing protocol (TSRP) for wireless sensor networks is proposed in this paper to defend against varieties of attacks. First, each node calculates the comprehensive trust values of its neighbors based on direct trust value, indirect trust value, volatilization factor, and residual energy to defend against black hole, selective forwarding, wormhole, hello flood, and sinkhole attacks. Second, any source node that needs to send data forwards a routing request packet to its neighbors in multi-path mode, and this continues until the sink at the end is reached. Finally, the sink finds the optimal path based on the path's comprehensive trust values, transmission distance, and hop count by analyzing the received packets. Simulation results show that TSRP has lower network latency, smaller packet loss rate, and lower average network energy consumption than ad hoc on-demand distance vector routing and trust based secure routing protocol.

Multiple Path Security-Aware Routing Protocol Mechanism for Ad Hoc Network (Ad Hoc 네트워크 라우팅 보안을 위한 다중경로 기반의 MP-SAR 프로토콜)

  • Han, In-Sung;Ryou, Hwang-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.260-267
    • /
    • 2008
  • As pervious the SAR(Security Aware Routing)[10] protocol is an secure Ad Hoc network protocol that finds a secure path, it is the security routing protocol that uses the security level of nodes as the routing information. However, the SAR protocol sometimes transfers data through inefficient transmission paths because it always tries to find secure nodes for a safe transmission. Since it is a protocol based on AODV[6], it will cause transmission delay as researching of security routing path. when a node is out of the data transmission range as its battery dying or movement. Although it is possible to connection of nodes because a characteristic of the SAR protocol, the connection is not easy to reconnect when the security level of intermediate node is lower than the level requested by a source node. In this paper, we suggest the MP-SAR based on the SAR to solve the SAR protocol's problem. The MP-SAR seeks multiple secure path for maintenance of data confidentiality using the expanded secure path detection techniques based on the SAR. It can transfer data quickly and reliably by using the shortest efficient path among multiple paths. In the research result, we proved a outstanding performance of MP-SAR than the previous SAR through comparison and analysis.